半散养雄性林麝 0~12 月龄的生长发育规律研究

李斐然1,刘文华1*,唐婕1,王永奇1,蒋本模2

(1. 陕西省动物研究所,陕西西安 710032;2. 宝鸡秦峰野生动植物开发利用有限公司,,陕西宝鸡 721006)

摘要 对10头0~12月龄半散养雄性林麝的体重和体尺进行测定,分析了其生长发育规律。结果表明,林麝体重累积生长曲线上升由急剧到平缓。0~4月龄和10~12月龄绝对生长速度呈现明显的上升状态,绝对增重在1月龄达到最大,此后逐渐减慢;0~3月龄生长强度最大,3~6月龄呈直线下降趋势,8月龄开始变得平缓:各项体尺指标在6月龄前增长明显,6~12月龄增长趋缓,6~12月龄肩高变化不大。该研究揭示了半散养林麝的生长发育规律,为进一步进行林麝选育和半散养生产管理提供参考。

关键词 半散养;林麝;生长发育规律;生长曲线

中图分类号 S865.4*1 文献标识码 A 文章编号 0517-6611(2014)23-07778-03

Study on the Growth and Development Law of Semi-Free Male Musk Deer from Birth to 12 Months Old

LI Fei-ran et al (Animal Research Institute of Shaanxi Province, Xi'an, Shaanxi 710032)

Abstract In order to study the growth and development law of the musk deer, the body weight and size of 10 semi-free male musk deer from 0 to 12 months were measured. The results showed that the weight cumulative growth curve increased from intense to gently. The 0 – 4 and 10 – 12 months absolute growth rate has an increasing trend and the absolute growth peak was between 0 to 1 months old, hereafter slowed down gradually. The growth intensity in 0 – 3 months was higher than that of other months. The growth intensity of 3 – 6 months has a significant linear downtrend, which increases slowly after the age of 8 months. The increase of the body ruler index was significant before the age of 6 months and a downtrend existed between 6 to 12 months. The length and shoulder height of 8 – 12 months changed fewer. The results revealed the growth development law of musk deer, which can provide reference for breeding and semi-free management in the future.

Key words Semi-free; Musk deer; Growth and development law; Growth curve

林麝(Moschus berezorskii)是麝科(Noschidae)体型最小的动物,是目前国内养殖数量最大的麝种,具有产麝香量大、品质优良和易于驯养繁殖等特点^[1]。经过多代人工养殖后,现在的圈养林麝存在部分种群质量下降等问题,不利于林麝以后的迁地保护和可持续利用^[2]。为了解决上述问题,凤县养麝基地率先研究半散养模式,最大程度模拟林麝野外生活环境,并取得阶段性成果。作为一种新兴的饲养模式,尚未见到关于半散养林麝生长发育规律的研究报道。

动物的生长发育主要受遗传、环境、性别等因素的影响, 生长发育性状(体重、体尺)是衡量仔麝生长发育程度的重要 指标。通过对仔麝生长曲线的研究,不仅可以动态了解其生 长过程、预测生长规律,而且还可以指导饲养管理,提高选育 效果。笔者对凤县养麝基地的林麝体重和体尺性状进行测 定和分析,揭示其生长发育规律,补充量化数据来检验这种 新式养殖方法下林麝的生长发育情况,为进一步开展饲养管 理、帮助林麝健康成长提供理论基础。

1 材料与方法

- 1.1.1 试验材料。试验在宝鸡市凤县黄牛埔镇秦峰养麝有限公司进行,时间为2012年4月至2013年6月。在半散养区域内选择出生日期相近、饲养管理条件一致的健康雄性林麝10头。
- **1.1.2** 研究区概况。研究基地位于海拔 1 200 m 的秦岭山区,暖温带山地气候,气候垂直差异明显,年平均气温 11.2 $^{\circ}$ 、1 月平均气温 1.1 $^{\circ}$ 、7 月平均气温 22.7 $^{\circ}$ 、年平均降

基金项目 陕西省科学院青年基金(2012K-35);陕西省科学院秦岭关键濒 危动物致濒机理及其种群扩繁技术的研究(2012K-01)。

作者简介 李斐然(1986-),男,陕西西安人,研究实习员,从事经济动物 养殖。*通讯作者,副研究员,从事林麝育种与疾病防治。

收稿日期 2014-07-03

水量 613.2 mm, 无霜期 188 d。

1.1.3 半散养圈舍。圈舍面积为700 m²以上,分室外取食场和室内休息舍,面积分别为35 m×25 m和3 m×2 m左右。

在植被较好的林区依山脊、沟底为分界线,围网以4.5 m 高的水泥柱或直立大树为界桩,网高3.5 ~ 4.0 m(14 号镀锌电焊网),在距地面1.5 m 高处用钢筋或刺网,防止野猪、黑熊等大型兽类破坏,网顶向内弯30 cm ,形成内沿,网外侧1 m 以内无灌丛杂木,便于日常巡护,网内侧2 m 内无灌丛或斜树,防止麝逃跑。地面呈自然生长状态,生长的植被类型包括乔木、灌丛、草丛和苔藓地衣等,主要植物有蔷薇科、槭树科、桑科、壳斗科及众多的禾本科植物。室内休息舍由红砖砌成 供林麝躲避风雨和休息之用。

1.2 试验方法

- 1.2.1 饲养管理试验。在同等条件下饲养管理。采取放养与补饲相结合的饲养方式。麝可以自由采食区域内植物。青绿饲料以当天工人采摘的各种鲜嫩树叶为主,每天按照定时定量保证质量的原则,早晚2次投放饲料,自由饮水。精补料主要组成为玉米、大豆、麦麸,同时添加微量元素和维生素。初生仔麝由母乳喂养,3个月离乳可自主采食后分圈管理,每块半散养围网内按雌雄比4:1进行分圈。仔麝成长过程中精补料的喂量随年龄的增长而增加。春秋两季定期防疫和驱虫。
- **1.2.2** 体重测定。在林麝出生后利用遥感体重计测量初生体重,并在其后每个月的晚上饲喂前空腹测量体重 1 次,持续至 1 岁。
- **1.2.3** 体长测定。体长是指从肩端到坐骨结节后端的直线 距离。在林麝初生至1岁每个月测量1次。
- 1.2.4 肩高测定。肩高是指从肩胛最高点到地面的垂直距

离。在林麝初生至1岁龄每个月测量1次。

1.3 数据统计与分析 根据实测的鉴定资料,对林麝生长发育规律分析数据,采用生物统计学和家畜育种学的方法计算其累积生长、绝对生长和相对生长率,并绘制生长曲线图。所有数据均采用 SPSS 17.0 软件进行数据统计与分析。

2 结果与分析

2.1 体重变化情况

2.1.1 0~12 月龄雄性仔麝的体重变化。林麝 1、3、6、8 月龄的体重分别达 12 月龄体重的 20.8%、56.7%、74.9% 和82.4%,8 月龄体重占成年林麝体重的 50% 以上。这表明林麝早期生长发育快。林麝的体重标准差也有差异,说明仔麝体重选择方面还有一定的潜力,应加强饲养管理、注意补饲。

表 1 0~12 月龄林麝的体重变化

月龄	体重//kg	月龄	体重//kg
0	0.53 ± 0.07	7	5.27 ± 0.22
1	1.90 ± 0.12	8	5.39 ± 0.24
2	3.01 ± 0.16	9	5.45 ± 0.21
3	3.71 ± 0.18	10	5.91 ± 0.23
4	4.34 ± 0.15	11	6.23 ± 0.20
5	4.79 ± 0.16	12	6.54 ± 0.18
6	4.90 ± 0.20		

表 2 0~12 月龄林麝的累积增重、绝对增重和相对增重

月龄	累积增重//kg	绝对增重//g/d	相对增长率//%	
0	0.53			
1	1.36	45.33	111.4	
2	1.11	37.00	45.2	
3	0.70	23.30	20.8	
4	0.63	21.00	15.7	
5	0.45	15.00	9.9	
6	0.11	3.67	2.3	
7	0.37	12.33	7.3	
8	0.12	4.00	2.3	
9	0.06	2.00	1.1	
10	0.46	15.33	8.1	
11	0.32	10.67	5.3	
12	0.31	10.33	4.9	

注:绝对生长(G) = ($W_1 - W_0$)/($t_1 - t_0$);相对生长率(R) = ($W_1 - W_0$)/($W_1 + W_0$)/2。G 为绝对生长,R 为相对生长率, W_1 为末重, W_0 为始重, $t_1 - t_0$ 为间隔时间。

- 2.1.2 累积增重情况。以月龄为横坐标(x),以体重为纵坐标(y),绘制累积生长曲线。由表 2 和图 1 可以看出,林麝 12 月龄前增重非常明显,6 月龄平均体重达到 4.90 kg,基本达到平均成熟体重的一半。12 月龄体重 6.54 kg,达到平均成熟体重的 71.6%。
- 2.1.3 绝对增重情况。绝对增重是一定时期内的平均日增重,表示家畜生长速度情况,是衡量动物的营养水平、判断其生长发育水平是否正常的依据^[3]。以月龄为横坐标(x),以日增重为纵坐标(y),绘制体重绝对生长曲线。由表2和图2可知,林麝体重随着月龄的增长而逐渐增加。从初生起日增重最快,6月龄逐步下降,7月龄稍有回升,8~9月龄生长水

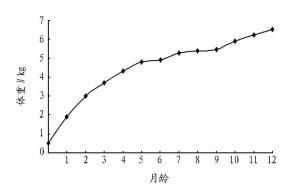


图 1 0~12 月林麝龄体重累积的生长曲线

平降人较低水平,10 月龄起逐步提高。1~5 月龄生长发育速度最快,以后生长水平逐渐下降,平均日增重最大值达到45.33 g/d,10~12 月龄又一次加快生长发育。平均日增重虽有所下降,但仍可达15.33 g/d。

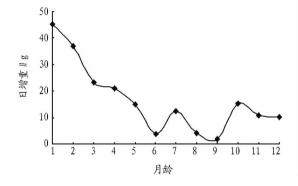


图 2 0~12 月龄林麝体重的绝对增长曲线

2.1.4 相对增重率。相对增重是一定时期内的增长量占原来体重的比例,即相对生长率,表示家畜生长强度情况。以月龄为横坐标(x),以相对生长率为纵坐标(y),绘制体重相对生长曲线。从图3可以看出,林麝体重的生长强度随着月龄的增长而下降。0~3月龄相对增重率最大。3~9月龄呈现明显的直线下降趋势,从8月龄开始逐渐变得平缓。这与动物生长发育规律基本一致,即在幼年时由于新陈代谢旺盛,生长发育强度较大,而成年后生长强度则趋于稳定。这表明仔麝在哺乳期间受环境的影响较大;随着年龄的增长,仔麝的适应性逐渐增强,从而使环境的影响作用逐渐减小^[4]。

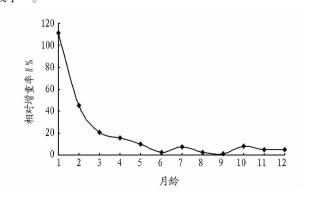


图 3 0~12 月龄林麝体重的相对增长曲线

2.2 体尺变化 体长和肩高实际上反映了骨骼的生长,由

于林麝尚未完全被驯化,有较强的应激性,因此体尺数据测量较为不易。此次试验仅得到体长和肩高数据。同时,由于林麝养殖不以屠宰率为目的,故舍去胸围管围等反映肌肉和皮下脂肪积累的数据。由表3可知,林麝体尺均随月龄的增加而逐渐增加,雄仔麝1,3、6、8月龄的身长分别可达12月龄身长的56.14%、80.26%、91.01%和95.61%;仔麝1、3、6、8月龄肩高分别可达12月龄肩高的61.50%、81.2%、96.4%和97.0%,表明仔麝在6月龄以前体长、肩高的绝对生长和相对生长率均表现较高,6~12月龄体长和肩高增长缓慢,说明此阶段仔麝骨骼生长缓慢,主要是肌肉及皮下脂肪的增加。

表3 0~12 月龄林麝体尺的累积生长、绝对生长和相对生长率

月龄 -	累积生长//cm		绝对生长//10 ⁻³ cm/d		相对生长率//%	
	身长	肩高	身长	肩高	身长	肩高
0	17.8	18.1				
1	25.6	26.2	260.0	270.0	35.94	36.57
2	30.2	31.1	153.3	163.3	16.49	17.10
3	36.6	34.6	213.3	116.7	19.16	10.65
4	38.0	38.2	46.7	120.0	3.75	9.89
5	40.9	40.7	96.7	83.3	7.35	6.34
6	41.5	41.1	20.0	13.3	1.46	0.98
7	43.0	41.2	50.0	3.3	3.55	0.24
8	43.6	41.3	20.0	3.3	1.39	0.24
9	44.1	41.5	16.7	6.7	1.14	0.48
10	44.4	41.8	10.0	10.0	0.68	0.72
11	44.7	42.1	10.0	10.0	0.67	0.72
12	45.6	42.6	30.0	16.7	1.99	1.18

3 讨论

3.1 0~12 月龄半散养雄性林麝的生长发育规律 经过多年的饲养研究发现,仔麝的生长发育速度取决于以下条件:①新生仔麝是否及时得到哺乳;②有无近亲交配导致种源退化;③饲养管理水平的高低^[5]。身体各参数增长量的变化与其生活习性直接相关,这反映到体内的某些器官优先发育。林麝在野生环境中存在各种天敌(如豹猫和豹等),为了生存需要有灵敏的嗅觉、发达的听力及迅速的奔逃能力。因此,必须在尽量短的时间内加速生长。仔麝生长参数曲线表明,在出生后的时间内,有充足奶水哺乳,仔麝的体重一直保持高

速增长,感知外部环境的器官及逃避天敌的器官优先发育。 0~3月龄的相对增重率最大,表明仔麝在哺乳期内受环境影响较大,应注意妊娠母麝和泌乳母麝的饲养管理和营养补充,否则将影响仔麝的生长发育。

仔麝在4~6月龄生长强度较出生时下降,此时仔麝刚 断乳,开始采食青绿饲料,有一定的适应过程。此时精饲料 的添加不应过多,防止影响仔麝的消化系统。

入冬前,体重、体长、肩高等体尺生长参数增长明显。3 月龄仔麝离乳后有大概2个月的充足青绿饲料可以采食。秦岭山区10月份冬季气候寒冷,植物枯竭,干树叶所含的营养成分较低,适口性差,是食物匮乏期。林麝要想顺利渡过这个困难时期,就必须在入冬前储藏足够多的能量,以便有足够的体力抵御冬季低温和营养不良带来的体弱多病。从外形上来看,入冬前的林麝体重明显增加,皮下脂肪增厚。这一长期适应性的特点,以遗传的方式保留下来,仔麝的快速增长可能就是这一特性的体现。这段时期是家畜蛋白营养的匮乏期,在人工饲养时应加必须加强饲养管理,加强入冬前林麝的营养补充,适当增加精饲料和多汁饲料,补充蛋白,增强体质。

10 月龄开始, 仔麝体重增长速度恢复, 相应体尺指标也 开始增长, 此时是春暖花开各种树叶嫩芽萌发的时候, 青绿 饲料适口目充足, 标志林麝的第 2 次生长发育高峰开始。

3.2 待解决的问题 林麝尚未完驯化,每次捕捉都会产生极强的应激反应,在捕捉的当天停食停水,影响甚至可以持续2d。这对林麝体重和体尺的测量造成困难,无法大规模采集数据,导致样本的数据量有限。同时,由于捕捉带来的应激,或多或少影响了仔麝的生长发育。

参考文献

- [1] 吴家炎,王伟.中国麝类[M].北京:中国林业出版社,2006.
- [2] 王海燕,刘文华,钟铃,等. 人工养麝现状及前景发展[J]. 陕西师范大学学报;自然科学版,2006,34(S1);203-206.
- [3] 冯敏山,李祥龙,刘铮铸,等. 波尔级进杂交二代山羊体重及体尺生长曲线分析[J]. 中国畜牧杂志,2003,39(4);20-21.
- [4] 张春艳, 沈忠, 周志权, 等. 波尔山羊羔羊生长发育规律研究[J]. 华中农业大学学报, 2006, 25(6): 640-644.
- [5] 张保良. 麝的生长发育[J]. 野生动物,1982(4):24-27.

(上接第7759页)

和产羔率。

参考文献

- [1] 马保华,张红,李键,等. 山羊胚胎移植受体同期发情优化程序研究 [J]. 西南农业学报,2004,17(5):664-667.
- [2] PIERSON J T, BALDASSARRE H, KEEFER C L, et al. Seasonal variation in preovulatory events associated with synchronization of estrus in dwarf goats[J]. Theriogenology, 2001, 56(5):759 - 769.
- [3] 徐志伟,花卫华,刘泉,等. 不同处理方法对徐淮白山羊同期发情的效果[J]. 江苏农业科学,2011,39(2);318-319.
- [4] 张永安,王惠娥,高庆华,等.不同部位注射氯前列烯醇对南疆绒山羊同期发情的影响[J].中国草食动物,2011,31(1):38-39.
- [5] 绳贺军,罗军,高庆华,等. 不同处理方法对奶山羊同期发情效果的影响[J]. 畜牧与兽医,2009,41(3):43-44.
- [6] WILDEUS S. Current concepts in synchronization of estrus; Sheep and goats [J]. J Anim Sci, 2000, 77; 1 – 14.