草炭复配基质盐分含量对黄瓜育苗的影响

王朋成,张其安,马绍鋆,田红梅,严从生,秦艳梅,王 艳,方 凌* (安徽省农业科学院园艺研究所,安徽合肥 230031)

摘要 [目的]为了研究草炭复配基质盐分含量对黄瓜育苗的影响。[方法]采用草炭、蛭石、珍珠岩体积比3:1:1 配制育苗基质,研究草炭复配基质盐分含量对黄瓜育苗的影响。[结果]当基质盐分含量在1.5~3.0 g/kg(EC1.2~2.9 mS/cm)时,黄瓜种子发芽和生长较好,叶面积、全株干重、壮苗指数、活力指数均达到较高值,且当盐分含量为3.0 g/kg(EC2.9 mS/cm)时,活力指数、壮苗指数均最高;当盐分含量小于1.5 g/kg(EC1.2 mS/cm)时,子叶较小,叶色浅,幼苗生长发育缓慢甚至停滞;当盐分含量大于4.5 g/kg(EC4.0 mS/cm)时,叶色深绿、皴缩、边缘干枯,幼苗生长受到抑制;当盐分含量大于11.5 g/kg(EC9.1 mS/cm)时,黄瓜种子不能出苗。[结论]该研究可以为黄瓜育苗基质的盐分控制标准提供理论依据。

关键词 黄瓜;基质;盐分含量;活力指数;壮苗指数

中图分类号 S642.2 文献标识码 A 文章编号 0517-6611(2014)36-12865-03

Effects of Salt Content of Complex Substrate on Cucumber Seedling

WANG Peng-cheng, ZHANG Qi-an, MA Shao-yun, FANG Ling* et al (Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031)

Abstract [Objective] The aim was to discuss the effects of salt content of complex substrate on cucumber seedling. [Method] Peat, vermiculite and perlite (volume ratio was 3:1:1) which was added different content of salt were used as cucumber substrate. And the germination and the amount of growth were studied. [Result] The cucumber seeds germinate and plant growth were better when the salt content was 1.5-3.5 g/kg (EC 1.2-3.5 mS/cm), including the leaf area, total dry weight, seedling index and vigor index. When the salt content was 3.0 g/kg (EC 2.9 mS/cm), the vigor index, and seedling index reached the peak. When the salt content was less than 1.5 g/kg (EC 1.2 mS/cm), the cotyledons were smaller, the leaf color was shallow, and the seedling growth was slow. When the salt content was greater than 4.5 g/kg (EC 4.0 mS/cm), the leaf color was dark green and wrinkled, and leaf blades ran dry, then seedling growth was inhibited. When the salt content was greater than 11.5 g/kg (EC 9.1 mS/cm), the cucumber seeds couldn't germinate. [Conclusion] The research could provide the theoretical basis for the salinity control standard of the substrate of cucumber seedling.

Key words Cucumber; Substrate; Salt content; Vigor index; Seedling index

基质是育苗的基础条件,直接影响育苗质量。基质可溶性盐分含量(或 EC)与育苗基质质量密切相关。低浓度盐对幼苗的生长、发育具有刺激作用,盐分含量超过一定量时就会对蔬菜作物造成盐胁迫^[1-2]。盐胁迫对苗期作物的危害主要表现在阻碍作物的生长发育,减少生物量,甚至导致幼苗期作物的死亡^[3]。我国目前工厂化育苗多用草炭、蛭石和珍珠岩按照不同比例混配的复合基质,而对育苗基质中适合育苗的盐分含量的研究鲜有报道。笔者开展了育苗基质中不同盐分含量对黄瓜育苗影响的试验研究,以期为黄瓜育苗基质的盐分控制标准提供理论依据。

1 材料与方法

1.1 试验材料 供试黄瓜品种为"津优 35"。试验于 2014 年 5~6 月在安徽省农业科学院园艺研究所育苗温室实施。育苗基质配制材料为洗盐处理后的草炭 (pH 5.5, EC 1.30 mS/cm,可溶性盐含量 1.3 g/kg),蛭石(pH 6.7, EC 0.34 mS/cm,可溶性盐含量 0.165 g/kg),珍珠岩(pH 7.2, EC 0.09 mS/cm,可溶性盐含量 0.044 g/kg)。采用全水溶性 58% 氮磷钾复合固肥调节基质盐分。

1.2 试验方法

1.2.1 试验设计。将草炭、蛭石、珍珠岩分别晾干后过 5 mm 筛,按体积比 3:1:1 配制育苗基质。将不同浓度的可溶性氮

基金项目 公益性行业(农业)科研专项(201303014-01);安徽省农业 科学院蔬菜集约化育苗技术创新团队(1300304)。

作者简介 王朋成(1968-),男,安徽宿州人,研究员,从事蔬菜育苗及 育苗基质研究。*通讯作者,研究员,从事茄果类蔬菜品种 选育及产业化研究。

收稿日期 2014-11-12

磷钾复合固肥溶于水,均匀喷洒到育苗基质中,混拌均匀,使 育苗基质可溶性盐浓度达到试验设计要求(表1)。以基质 不添加可溶性盐为对照。

试验采用一次性透明塑料杯(100 ml/杯)育苗。试验设25 个处理,每个处理 3 次重复,每个重复 10 个塑料杯,每杯播种 2 粒。每个塑料杯装基质 80 ml,播种前浇水 60 ml 至底部有少量积水。播种后覆盖相应基质,基质厚度 0.5 cm,覆盖地膜保湿。

播种后塑料杯置于温室内,室内温度高于 30 ℃时进行 遮阳降温。浇水采用去离子水,每次每杯浇水 40 ml,浇水时 间上午 8:00 ~9:00 时,累计浇水 9 次。

表1 试验设计

- WALL											
处理	肥料用	盐浓度	EC	处理	肥料用	盐浓度	EC				
	量//g/L	g/kg	mS/cm	处理	量//g/L	g/kg	mS/cm				
①(CK)	0	0.8	0.5	14)	8.7	7.0	7.2				
2	0.3	1.0	0.6	15	9.4	7.5	7.3				
3	1.0	1.5	1.2	16	10.1	8.0	7.5				
4	1.7	2.0	1.8	17	10.8	8.5	7.7				
(5)	2.4	2.5	2.4	18	11.5	9.0	7.9				
6	3.1	3.0	2.9	19	12.2	9.5	8.2				
7	3.8	3.5	3.5	20	12.9	10.0	8.4				
8	4.5	4.0	4.0	21)	13.6	10.5	8.6				
9	5.2	4.5	4.6	22	14.3	11.0	8.8				
10	5.9	5.0	5.2	23	15.0	11.5	9.1				
11)	6.6	5.5	5.8	24)	15.7	12.0	9.5				
12	7.3	6.0	6.3	25)	16.2	12.5	10.1				
<u>(13)</u>	8.0	6.5	6.6								

1.2.2 测定方法。黄瓜播种后 3 d, 开始每天上午 8:00 调查

出苗率,直至出苗率稳定。黄瓜幼苗出土后 15 d,调查叶片 长宽、株高、茎粗。取整株 105 ℃杀青 15 min,70 ℃烘干,测 定全株于重、根于重和地上部于重。

出苗率 = 测试种子出苗数/测试种子数 发芽指数(GI)公式为: $GI = \sum GI/Dt$

式中,Gt 为 t 天的种子发芽数;Dt 为相对应的种子发芽天数。

活力指数(VI)公式为: $VI = GI \times S$

式中,GI 为发芽指数:S 为幼苗根干重(g)。

叶面积(A) 公式为:A = 14. 16 - 5. 0 × L + 0. 94 × L2 + 0. 47 × W + 0. 63 × W2 - 0. 62 × L × W 式中,L 为叶长:W 为叶宽。

壮苗指数 = (茎粗/株高 + 根干重/地上干重) ×全株干重(g)

基质可溶性盐含量的测定采用质量法;电导率和 pH 的测定均采用基质饱和水法。测定 3 次,取平均值。

试验数据采用 DPS 统计软件进行处理。

2 结果与分析

2.1 基质盐分含量对黄瓜种子发芽指数的影响 从图 1 可以看出,当基质盐分含量小于 3.0 g/kg (*EC* 2.9 mS/cm) 时,黄瓜发芽指数随盐分浓度的增加而稍有增加,但差异不显著;当盐分浓度大于 3.0 g/kg (*EC* 2.9 mS/cm) 时,发芽指数随盐分浓度的增加而逐渐降低;当盐分含量达到 12.0 g/kg时,种子不能发芽。

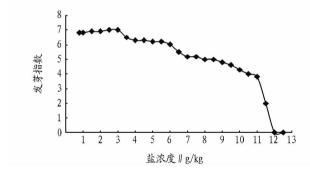


图 1 盐分浓度对黄瓜种子发芽指数的影响

2.2 基质盐分含量对黄瓜出苗率的影响 从图 2 可以看出,当基质盐分含量小于 6.0 g/kg (EC 6.3 mS/cm)时,黄瓜出苗率在 93%以上;当盐分浓度大于 6.0 g/kg (EC 6.3 mS/cm)时,出苗率随盐分浓度的增加而逐渐降低;当盐分含量达到 11.5 g/kg (EC 9.1 mS/cm)时,黄瓜种子能够发芽出土但不能成苗,出苗率为 0。

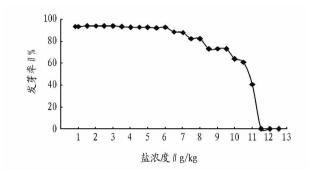


图 2 盐分浓度对黄瓜出苗率的影响

2.3 基质盐分含量对黄瓜幼苗活力指数的影响 从图 3 可以看出,当盐分含量小于 2.0 g/kg (EC 1.8 mS/cm)时,黄瓜幼苗活力指数随盐分含量的增大而升高,说明少量盐分能够促进根系生长,增加黄瓜苗的生长活力;当盐分含量在 2.0 ~ 3.0 g/kg(EC 1.8 ~ 2.9 mS/cm)时,活力指数无变化,是黄瓜苗健壮生长的最佳范围;当盐分含量大于 3.0 g/kg(EC 2.9 mS/cm)时,活力指数随盐分含量的增加而降低,说明黄瓜苗受盐胁迫,抑制根系生长。

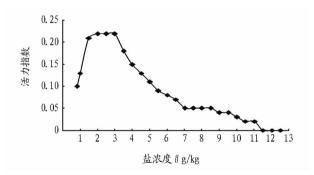


图 3 盐分浓度对黄瓜幼苗活力指数的影响

表 2 盐分浓度对黄瓜苗生长量的影响

处理	叶面积 $/\!\!/ cm^2$	总干重//g	叶色	处理	叶面积 $/\!\!/ cm^2$	总干重//g	叶色
①(CK)	14.5fg	0.22be	黄绿	13	44.06de	0.16cd	深绿微皱缩
2	$21.03 \mathrm{fg}$	$0.23 \mathrm{bc}$	黄绿	14)	38. 17de	0.14de	深绿微皱边缘黄
3	39.98 de	0.26b	黄绿	15	35.82de	0.13de	深绿微皱边缘黄
4	61.15c	0.28a	绿	16	32.59ef	0.12de	深绿微皱边缘黄
5	83.30b	0.30a	绿	17	29.11ef	0.11e	深绿,皱叶边缘发黄
6	102.13a	0.32a	绿	18	26.63ef	0.10ef	深绿,皱
7	95.75a	0.30a	绿	19	23.95fg	$0.09\mathrm{ef}$	深绿,皱
8	90.19ab	0.27ab	绿	20	21.57fg	$0.08\mathrm{ef}$	深绿,皱
9	86.54b	0.25b	深绿	21)	19.34fg	$0.07\mathrm{ef}$	深绿,皱
10	69.60c	$0.22 \mathrm{bc}$	深绿	22	15.95fg	0.05f	绿,微皱
11)	51.12d	$0.19\mathrm{cd}$	深绿	23	15.65fg	0.05f	深绿,皱
12	48.65d	0.18cd	深绿微皱缩	24)	0	0	0

2.4 基质盐分含量对黄瓜幼苗生长量的影响 从表 2 可以 看出, 当基质盐分含量小于 3.0 g/kg (EC 2.9 mS/cm) 时, 黄 瓜幼苗生长量随着盐分浓度的增加而增加,大于3.0 g/kg (EC 2.9 mS/cm)时,幼苗生长量随盐分浓度的增加而减少。 当盐分含量小于 1.5 g/kg(EC 1.2 mS/cm) 时,叶片呈黄绿 色,说明基质养分不足,幼苗生长受限;当盐分含量在2.0~ 4.0 g/kg(EC 1.8~4.0 mS/cm)时,叶片绿色,且幼苗长势良 好; 当盐分含量在 4.5~5.5 g/kg (EC 4.6~5.8 mS/cm) 时, 叶片呈深绿色,幼苗生长受到盐分胁迫影响;当盐分含量大 于 5.5 g/kg (EC 5.8 mS/cm) 时, 黄瓜苗开始出现盐害症状。 2.5 基质盐分含量对黄瓜幼苗壮苗指数的影响 从图 4 可 以看出, 当盐分含量小于 1.5 g/kg (EC 1.2 mS/cm) 时, 黄瓜 壮苗指数随盐分含量增大而迅速升高,说明少量盐分能够促 进根系生长,增加黄瓜苗的生长活力;当盐分含量在1.5~ 3.0 g/kg (EC 1.2~2.9 mS/cm)时,壮苗指数达到较高值,叶 片呈正常生长的绿色,能够满足黄瓜苗正常生长的营养需 求; 当盐分含量大于 3.0 g/kg (EC 2.9 mS/cm) 时, 壮苗指数 呈下降趋势,且降幅明显,说明过多盐分对黄瓜幼苗造成盐 胁迫。

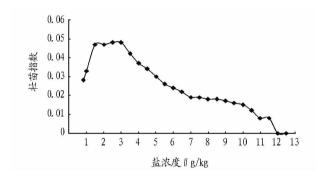


图 4 基质盐分含量对黄瓜壮苗指数的影响

3 结论与讨论

发芽指数和活力指数是评价种子发芽常用的指标,反映种子发芽速度、发芽整齐度和幼苗健壮的潜势^[4]。基质中含有低浓度的盐分可以促进种子的萌发^[5-6]。研究表明,草炭、

蛭石、珍珠岩复配黄瓜育苗基质可溶性盐分浓度低于 3.0 g/kg (EC 2.9 mS/cm)时,黄瓜种子发芽指数、出苗率、活力指数随着盐分浓度的增加而增加。该结果与宋科等^[7]研究结果一致;当基质盐分含量为 1.5~3.0 g/kg(EC 1.2~2.9 mS/cm)时,黄瓜种子发芽指数、活力指数均达到较高值,且种子萌发时间缩短;当盐分含量小于 6.0 g/kg(EC 6.3 mS/cm)时,发芽指数降低,影响种子出苗时间,但最终出苗率无显著变化。这与张志刚等^[8]研究一致。

在盐胁迫下,幼苗根系、地上部生长均受到抑制^[7,9]。阎 秀峰等^[10]报道了星星草幼根生长与盐浓度呈极显著的负相关,而其幼芽在低盐浓度下则表现出增效效应。研究中,当基质盐分含量小于 3.0 g/kg (EC 2.9 mS/cm)时黄瓜幼苗生长量随着盐分浓度的增加而增加,当大于 3.0 g/kg (EC 2.9 mS/cm)时幼苗生长量随盐分浓度的增加而减少,当盐分含量大于 4.5g/kg (EC 4.0 mS/cm)时黄瓜苗开始出现盐害。这与 ZHU 等^[2-3]研究结果一致。由此可知,一定浓度的盐分离子是幼苗生长发育所需的营养成分,能够刺激作物的生长发育。

参考文献

- [1] 杨霄乾,靳亚忠,何淑平. NaCl 盐胁迫对番茄种子萌芽的影响[J]. 北方园艺,2008(11):24-26.
- [2] ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53: 247 – 273.
- [3] MA HY, GUO R, LI HA, et al. Study on salinity tolerance of tomatoes during seed germination under different salt stress conditions [J]. Agricultural Science and Technology, 2008, 9(4):4-7.
- [4] 何欢乐,蔡润,潘俊松,等. 盐胁迫对黄瓜种子萌发特性的影响[J]. 上海交通大学学报,2005,23(2):148-152.
- [5] 陈火英,张才喜. NaCl 胁迫对不同品种番茄种子发芽特性的影响[J]. 上海农学院学报,1998,16(3):209-212.
- [6] 姜泠若,徐刚. 不同浓度 NaCl 胁迫对番茄种子发芽特性的影响[J]. 江 苏农业科学,2002(5);41-42.
- [7] 宋科,徐四新,罗国安,等. 土壤可溶性盐含量对黄瓜种子萌发及其幼苗 生长发育的影响[J]. 浙江农业学报,2013,25(3):593-597.
- [8] 张志刚,董春娟,尚庆茂. 穴盘基质氮磷钾添加量对黄瓜苗生长发育的影响[J]. 园艺学报,2012,39(S1):2694.
- [9] 朝朝红. 盐对吸涨后水稻种子和幼苗生长的影响[J]. 植物生理学通讯, 1998,34(5);339-342.
- [10] 阎秀峰,孙国荣,那守海,等. 盐分对星星草萌发的胁迫作用[J]. 草业科学,1994,11(4);27-31.

(上接第12839页)

期 95 d,主茎叶龄 16.5 叶。6 月 1 日播种,8 月 25 日始穗,播始历期 85 d,主茎叶龄 16.0 叶。叶鞘、稃尖和柱头无色,谷粒长 7.4 mm、宽 3.3 mm,长宽比 2.2。

抽穗 $2 \sim 3$ d 后才开始开花,见穗 $5 \sim 7$ d 后进人盛花期,花时较晚,开花较集中。小面积制种异交结实率为 35% 左右。千粒重为 23.0 g。

该不育系与母本皖 2312S 的主要区别是:比 2312S 播始 历期长 4 d 左右,茎秆粗壮,剑叶比 2312S 短 8.5 cm、宽度小 0.1 cm;早播穗顶端有芒,而 2312S 无芒。

5 结论

以自育的粳稻光敏核不育系皖 2312S 为母本,与从江苏

引进的扬稻9538 粳稻品系杂交,经5年8代选择育成粳稻光敏核不育系皖2306S。结果表明,种植群体1281株,不育株率为100%,套袋自交不实率为99.99%,花粉败育率为99.98%。该不育系在合肥种植,稳定不育期30d以上,接种鉴定和田间种植显示,对稻瘟病的抗性较好,适宜选配中粳或晚粳组合。

参考文献

- [1] 王守海,吴爽,杜士云,等. 粳稻光敏核不育系皖 2312S 的选育[J]. 安徽 农业科学,2009,37(14):6385-6386.
- [2] 李成荃,王守海,罗彦长,等. 粳型水稻光敏核不育系 7001S 的选育 [C]//安徽省农业重点课题论文集. 北京:中国农业科技出版社,1997: 1-4,89.
- [3] 李彬,邓元宝,颜学海,等. 一个粳稻来源抗稻瘟病基因的鉴定、遗传分析和基因定位[J]. 作物学报,2014,40(1):54-62.