保山昌宁烟区土壤和烟叶中矿质元素分析研究

贾海江,徐雪芹 (广西中烟工业有限责任公司,广西南宁 530001)

摘要 [目的]为了协调烟叶化学成分,提高烟叶品质。[方法]对保山昌宁主烟区植烟土壤和烟叶中微量元素进行分析。[结果]烟叶中锌、锰、铜含量与土壤中对应元素显著正相关,昌宁县三烟区土壤铜、铁含量丰富,锌、锰缺失,其中11.14%土壤缺锰,2.05%的土壤严重缺锌;烟叶中铜含量偏高,铁含量偏低,锌含量适中。[结论]在烤烟生产上要注意增施锌肥,控制铜肥,喷施锰肥。

关键词 昌宁;植烟土壤;烟叶;矿质元素

中图分类号 S572 文献标识码 A 文章编号 0517-6611(2015)05-093-02

Mine Nutrition Element Analysis of Soil and Flue-cured Tobacco in Main Tobacco-growing Areas in Baoshan, Changning JIA Hai-jiang, XU Xue-qin (China Tobacco Guangxi Industrial Co., Ltd., Nanning, Guangxi 530001)

Abstract [Objective] The research aimed to harmonize chemical components in the flue-cured tobacco leaves and improve its quality. [Method] Microelements were analyzed in soil and leaves about the main tobacco-growing areas in Baoshan, Changnign. [Result] The correlation of copper, manganese, zinc content in tobacco leaves and the corresponding element in soils was significantly positive. The available Cu and Fe in soil of tobacco-growing areas was abundant. 11.14% of soil in tobacco-growing areas was short of Mn, and 2.05% of soil in tobacco-growing areas was short of Zn. Tobacco leaves were rich in Cu, poor in Fe and Zn were moderate. [Conclusion] In the flue-cured tobacco production, the zinc fertilizer should be increased, the iron fertilizer should be controlled and Mn should be sprayed.

Key words Changning: Soil in tobacco-growing areas: Flue-cured tobacco: Mine nutrition element

烟叶是卷烟工业最基本的原料,其质量直接影响卷烟的品质。烟叶的品质除受常规化学成分影响外,还受铁、锰、铜、锌等烟叶所需矿质营养元素的影响。这些矿质元素对于烤烟的生长发育至关重要,其含量的过高或过低均会引起烟草生理机能失调,影响正常机能代谢,导致烟叶主要化学成分不协调,进而影响烟叶中香味成分的含量。大量研究表明,烟叶中矿质营养元素含量对其外观、香吃味、刺激性等均有显著的影响^[1-7]。笔者通过对保山昌宁县3个烟区土壤和对应烟叶中有效态矿质元素进行研究,掌握保山昌宁烟区土壤和烟叶中矿质元素含量,为该区烟叶生产、土壤微肥调施、保持土壤养分平衡提供参考,从而实现协调烟叶化学成分,提高烟叶品质。

1 材料与方法

1.1 土壤样品的采集与分析 采集广西中烟基地保山昌宁 3 个主烟区土壤样品共 98 个,用木铲取耕作层土样,风干后

用木锤研磨,过100目尼龙筛,用 DTPA 溶液浸提^[8],采取原子吸收光谱法测定土壤中有效铁、有效锰、有效铜和有效锌的含量。

1.2 烟叶样品的采集与分析 取与土壤样品对应的烟叶样品,选取等级为中橘三。共采集样品 294 个,烟叶样品经密闭微波消解系统进行处理,用原子吸收光谱仪测定烟叶中矿质元素铁、锰、铜、锌有效态含量。

2 结果与分析

2.1 土壤矿质元素含量

2.1.1 有效铁。由表 1 可知,昌宁烟区土壤有效铁含量在 1.64~46.7 mg/kg之间;仅有 9.23%的土壤铁含量低于 4.5 mg/kg,有效铁含量大于 10 mg/kg 的土壤占有比例大于 63%,三烟区有效铁均值都在 15 mg/kg 以上。由此可知,昌宁县三烟区土壤基本不缺铁;从变异系数来看,丛岗地块间铁含量差异最小。

烟区	变幅	平均值	仁龙关	变异系数	分级比例//%					
	mg/kg	mg/kg	标准差	(CV) //%	≤4.5	4.5 ~ 10.0	≥10.0			
珠街	1.64 ~46.70	20.51	3.06	20.37	5. 19	26.13	68.68			
丛岗	4.28 ~30.10	16.26	1.09	8.16	2.96	26.09	70.95			
羊街	3.15 ~29.80	15.73	0.86	12.71	1.08	35.17	63.75			

2.1.2 有效锰。由表2可知,三烟区有效锰含量在2.01~53.4 mg/kg 范围内。均值在20 mg/kg 以上,处于较高含量范围。由此可知,昌宁县三烟区除11.14%的土壤锰含量低于5 mg/kg外,大多土壤不缺锰;从均值来看,在三烟区土壤中有效锰含量最高的是羊街,丛岗最小;从变异系数分析,三主烟区土壤锰含量差异不显著,说明各烟区土壤锰含量相对

稳定。

2.1.3 有效铜。由表3可知,各烟区土壤有效铜含量在0.18~35.06 mg/kg之间,均大于0.2 mg/kg,处于中等偏上的水平;三烟区横向分析,羊街烟区有效铜含量相对较低,平均含量为2.03 mg/kg,丛岗偏高。从平均值来看,丛岗烟区土壤铜含量较高,羊街地块间铜含量差异较大。

作者简介 贾海江(1978-),男,河南濮阳人,农艺师,硕士,从事烟叶生 产技术与烟叶分级方面的研究。

收稿日期 2014-12-23

表 2 三烟区土壤有效锰含量

भार	变幅	平均值	左承关	变异系数		分级比例/	//%	
烟区	mg/kg	mg/kg	标准差	(CV) //%	≤ 5	5 ~ 20	≥20	
珠街	2.01 ~35.6	25.1	3.78	9.36	3.12	37.11	59.77	
丛岗	1.99 ~ 30.9	20.3	2.46	8.51	5.21	40.43	54.36	
羊街	4.13 ~53.4	38.5	4.37	6.02	2.84	23.76	73.69	

表 3 三烟区土壤有效铜含量

烟区	变幅	平均值	长准夫	变异系数	分级比例//%			
	mg/kg	mg/kg	标准差	(CV) //%	$0.1 \sim 1.0$	≥1.0		
珠街	0.21 ~13.29	2.25	0.73	29. 15	35.13	65.87		
丛岗	0.18 ~35.06	3.58	2.05	33.26	47.16	52. 84		
羊街	0.83 ~20.18	2.03	0.96	42.73	27.83	72. 17		

2.1.4 有效锌。由表 4 可知,土壤有效锌含量在 0.46~17.16 mg/kg之间,67%以上土壤处于较高水平。按分级等级,珠街有 2.05%的土壤有效锌含量低于 0.5 mg/kg,需采取

有效措施提高该区土壤有效锌含量;由变异系数可知,地块间锌含量在三烟区差异均较大,其中丛岗表现最显著,变异系数高达50.71%,应采取措施以缩小差异。

表 4 三烟区土壤有效锌含量

烟区	变幅	平均值	标准差	变异系数		分级比例/	分级比例//%	
	mg/kg	mg/kg	你任左	(CV) //%	≤0.5	0.5 ~ 1.0	≥1.0	
珠街	0.46 ~ 8.27	3.15	0.83	31.24	2.05	30.07	67.88	
丛岗	0.69 ~17.16	2.97	2.03	50.71	0	21.27	78.73	
羊街	0.53 ~15.32	2.08	1.87	23.58	0	15.98	84.02	

2.2 各烟区烟叶中微量元素含量 参照国内外卷烟工业 企业对初烤烟叶矿质元素含量的要求,制定初烤烟叶中、矿

质元素含量评价指标[6]。

表 5 初烤烟叶矿质元素评价指标

mg/kg

沙 县二妻	☆♡ / 〉	评价标准							
微量元素	部位	低	较低	适中	较高	高	很高		
铁	X^CB	< 55	55 ~ 90	90 ~ 120	120 ~ 200	> 200	-		
锰	X_CB	< 20	20 ~ 50	50 ~ 200	200 ~ 500	> 500	-		
铜	X_CB	<4	4 ~ 6	6 ~ 15	15 ~ 25	25 ~ 30	>32		
锌	X^CB	<7	7 ~ 20	20 ~ 50	50 ~ 70	>70			

表 6 三烟区初烤烟叶矿质元素含量

产地元素	珠街				丛岗		羊街		
	均值//mg/kg	标准差	变异系数//%	均值//mg/kg	标准差	变异系数//%	均值//mg/kg	标准差	变异系数//%
铜	18.16	5.39	63.21	20.56	9.13	38.16	10.38	3.12	36.12
锰	63.82	7.13	7.38	55.31	10.11	22.59	97.36	9.16	22.51
铁	103.50	12.37	13.19	86.23	15.32	11.38	57.36	8.63	17.35
锌	47.63	9.16	18.63	77.15	12.26	31.13	46. 12	9.51	15.38

结合初烤烟叶矿质元素的评价指标(表5),开展保山市三烟区烟叶矿质元素分析。由表6可知,从均值上看,昌宁县3个主烟区烟叶样品的铜含量除丛岗为9.13 mg/kg,其余均高于15 mg/kg,处于较高水平,可见昌宁县3个产区烟叶不缺铜,其含量在中等偏上水平。分析土壤与其对应烟叶中矿质元素含量,两者铜含量呈显著正相关,因此可通过增施含铜微肥来提高烟叶中的铜含量;从各区烟叶锰含量的均值可以看出,昌宁县烟叶锰含量处于适宜水平。由表6中烟叶铁含量可知,珠街烟叶铁含量最高,均值高达103.5 mg/kg,含量适宜,其他产地烟叶铁含量均处于较低水平,尤其是羊

街,均值仅有57.36 mg/kg,远低于90 mg/kg 的烟叶铁元素评价指标适中水平的下限。从表6还可以看出,三烟区烟叶锌含量偏高,其中最高的丛岗烟叶均值高达77.15 mg/kg,但地块间烟叶锌含量差异较大,说明含量不均衡,需针对性调整。

3 结论

通过对保山昌宁县区3个不同植烟区域的土壤和初烤烟叶样品中矿质元素的分析,可知三烟区初烤烟叶铜含量较高,锰、锌含量适宜;部分地区铁含量偏低,部分偏高,含铁量高土壤主要分布在丛岗。从土壤与烟叶中矿质元素的关联分析可以看出,烟叶中铜、锌、锰含量与土壤中对应元素呈显

(下转第170页)

4 对于地质公园建设可持续发展的建议

- 4.1 完善地质公园管理体制 鉴于九嶷山地质公园已申报成功,建设还未起步,借鉴国内外地质公园的经验教训,可以做到在不重蹈覆辙的基础上走自己的道路。待九嶷山地质公园批准成立后,将设立九嶷山地质公园管理处,隶属于宁远县国土资源局。设置专门的管理机构和管理人员及公园警察,确保地质遗迹资源免受损害。地质公园管理机构相对独立,与旅游部门、林业部门等相关部门不存在隶属关系。评定为地质公园的景区要撤消其风景名胜区、旅游地等相关的称号,避免多头管理。
- 4.2 加强调控管理,统一规划开发 按照建立"数字地质公园"的基本要求,以中国地质遗迹(地质公园)保护信息管理系统软件为操作平台,近期完成宁远县九嶷山省级地质公园地质遗迹保护管理数据库建设;中期完成地质公园信息监管系统、保护区视频监控系统、SOS 紧急电话系统、公共旅游网等。地质公园发展战略和建设规划的确立,应该以保护地质遗迹资源为前提,在公园的建设初期就应该以可持续发展思想为指导,规划时要坚持保护与开发并存的思想。不论是近期或远期的发展规划,都要从公园的环境适应性和资源保护性来考虑,适度开发旅游资源,提前考虑到公园生态环境的承受能力,防止掠夺性开发,避免地质遗迹资源和环境的过载损失^[5]。
- 4.3 旅游用地的开发与地质遗迹的保护同步,但要分清主次 地质遗迹资源具有非常重要的科学价值,一旦遭到破坏就无法恢复,具有脆弱性特点。而地质公园的设立正是为了对地质遗迹资源进行有效的保护。寻求地质公园的可持续发展就要始终贯彻"保护第一"的思想,实施可持续发展战略,促进旅游业与经济、社会、资源、环境的协调发展。旅游用地的开发,相关部门不要只注重经济利益,忽视生态效益,虽然开发与地质遗迹的保护要同步,但切记分清主次。
- 4.4 完善景区基础设施 为了更好地保证交通顺畅,避免园区建成后因为游客数量增多出现交通拥堵现象,计划在原来公路的基础上再修几条次级公路。同时,园区内部也要修建新的游道,包括顺着冷水镇、湾井镇和九嶷山部分景点游道,连接三大景区的景区公路;景点之间也要有小型公路方便游客游览;修建地质公园景点间索道等。具体建议:开辟

自驾车、观光巴士(景区间用巴士,景区内景点间以环保电瓶 车、田园火车为主)及自行车等车行道、步道(登山栈道)以及 空中旅游交通(热气球、小型飞机等)、水上交通(游船、竹筏、 皮划艇)等交通系统,使交通方式多样化,对重点景区的交通 实行重点整改,引入以慢游为主的交通游览工具,并提供特 色的区内交通游览工具。另外,在牛头江村往香炉山的方 向,有一处开阔平地,可建立通往三分石的索道始发站、三分 石景区的管理处和停车场。在通往牛亚岭瑶寨的山顶处观 景角度很好,可远观"万山朝九嶷"之宏伟景象,应设立观景 台和景区管理处。供电方面,为了满足许多新开发景点和新 建立的基础设施的用电需求,未来还要进一步完善园区的供 电设施。邮电通信方面,由于九嶷山处于宁远县郊区,所以 邮电系统并不发达。未来还要在园区附近修建邮政所,电 信、移动、联通营业厅,无线信号基站等。由于地质公园处于 郊区,附近基本是村庄,所以星级饭店、酒店很少。普通的饭 店、酒店也数量不多。况且地质公园面积较大,游客留宿于 此便成自然,一旦批准成立,未来满足游客的需求,计划在园 区内部及周边修建一定规模的住宿、餐饮服务设施来接待 游客。

5 结语

地质公园如何建设,目前在我国已成为热点问题。要处理好旅游用地特别是地质公园保护与开发之间的关系,关键是要树立正确的开发观念,建立可持续发展的地质遗迹开发、保护和利用体系^[6],坚持以合理利用土地为原则,以保护地质遗迹为前提,开发利用为手段的可持续发展思想,促进旅游地质资源的开发和利用。

参考文献

- [1] 余菡. 中国世界地质公园可持续发展研究[D]. 昆明: 昆明理工大学, 2005
- [2] 胡能勇. 湖南省地质遗迹资源特征及资产化管理研究[D]. 长沙:中南大学,2013.
- [3] 杨洁明. 基于可持续发展思想的地质公园规划设计研究[D]. 西安:长安大学,2007.
- [4] 张西林. 崀山风景区旅游深度开发研究[J]. 国土与自然资源研究: 社会科学版,2006(2):63-64.
- [5] 胡善风. 黄山旅游资源开发与可持续利用研究[J]. 地理科学,2002,22 (3):371-374.
- [6] 马艳平,徐国伟,马诚超. 关于我国地质公园建设可持续发展的思考 [J]. 合肥工业大学学报: 社会科学版,2008,22(3):16-18.

(上接第94页)

著正相关。因此,若要调节烟叶中矿质元素含量,则可通过 改善土壤中矿质元素含量的途径,同时利用土壤酸碱度可影 响烟株对元素的吸收原理,可采取措施调节土壤 pH 来提高 烟株对元素的汲取,协调烟叶化学成分,改善烟叶的质量,提 高烟叶的吸食品质。

参考文献

[1] 胡国松,曹志洪,周秀如,等. 烤烟化学组分与抽吸品质的关系研究初报[M]//曹志洪. 优质烤烟生产的钾素与微素. 北京:中国农业科技出版社,1995:11-17.

- [2] 肖协忠.烟草化学[M].北京:中国农业科技出版社,1997.
- [3] 金闻博,戴亚. 烟草化学[M]. 北京:清华大学出版社,1994.
- [4] 徐茜,陈爱国,戴培刚,等. 镁肥合理施用对烤烟生长及产质量的影响 [J]. 中国烟草科学,2011,32(2):33-37.
- [5] 胡国松,王志彬,傅建政,等. 烤烟施肥新技术[M]. 北京:中国农业出版 社,2000;20-21.
- [6] 袁有波,陈雪,罗贞宝,等.毕节地区初烤烟叶中微量元素含量分布特征研究[J].中国烟草科学,2007,28(5):45-48.
- [7] 柳均,何伟,周冀衡,等 不同品种烤烟对土壤微量元素的相应[J].中 国烟草科学,2010,31(1);33-40.
- [8] 鲁如坤 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000;205-223.