枣园林下养鸡对土壤物理性质的影响

黄小洋¹, 陆歆艳¹, 王海芹², 刘金根¹, 季利民³ (1. 苏州农业职业技术学院, 江苏苏州 215008; 2. 江苏省农业环境监测与保护站, 江苏南京 210036; 3. 江苏省常熟市浦苑生态园, 江苏常熟 215513)

摘要 [目的]探索常熟枣园林下养鸡对土壤物理性质的影响。[方法]在枣园林下设置5个处理,即放养鸡密度依次为0只/hm²(CK)、1200、1800、2400和3000只/hm²,研究了枣园林下养鸡对0~20cm土层土壤pH、自然含水量、容重、总孔隙度、有效孔隙度和非有效孔隙度的影响。[结果]放养区各处理的土壤pH、自然含水量、总孔隙度、有效孔隙度和非有效孔隙度均低于未放养区;放养区土壤容重大于未放养区。[结论]长期林下养鸡会破坏土壤物理性质,应控制放养密度和放养时间,以1800~2400只/hm²为宜。

关键词 林下养鸡;土壤物理性质;枣园;常熟市

中图分类号 S152 文献标识码 A 文章编号 0517-6611(2016)31-0135-02

Effect of Raising Chicken on Soil Physical Properties in Jujube Orchard

HUANG Xiao-yang¹, LU Xin-yan¹, WANG Hai-qin² et al. (1. Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu 215008; 2. Jiangsu Station of Agro-Ecological Monitoring and Protection, Nanjing, Jiangsu 210036)

Abstract [Objective] The aim was to explore effects of raising chicken on soil physical properties in Changshu jujube orchard. [Method] Setting up 5 treatments in jujube orchard, namely 0 (non-chicken raise plot), 1 200, 1 800, 2 400 and 3 000 ind/hm 2 , effects of raising chicken on 0 – 20 cm soil pH, natural moisture content, bulk density, total porosity, effective porosity and non effective porosity were studied. [Result] The results showed that the pH, soil water, total porosity, the ratio of effective porosity and non-effective porosity of the soil in CRP decreased obviously than NCRP, the bulk density of the soil in CRP increased obviously than NCRP. [Conclusion] Long-term raising chickens under orchard can destroy soil physical properties, the density of chicken and the duration should be controlled as 1 800 – 2 400 ind/hm 2 .

Key words Raising chicken under the orchard; Soil physical properties; Jujube garden; Changshu City

由于自然放养鸡饲养期较长,肉质细嫩,味道鲜美,无激 素、色素和抗生素残留,受到消费者的青睐。放养鸡市场行 情好,价格高于圈养鸡,同时能免去处理粪污的部分费用,因 此很多养鸡企业和农业企业已经开始发展林下养鸡产业。 虽然林下养鸡经济效益较好,但是笔者调查发现,较高密度 放养区域植被稀疏,鸡粪遍地,遇降雨天气,鸡粪与泥土混合 成泥粪浆,随地表径流进入周边水体,对周边水体的水质构 成威胁。此外,放养密度过大还可能影响土壤的物理性质, 使土壤总空隙度下降,进而影响土壤的持水性,破坏农业环 境,不利于农业可持续发展。魏忠华等[1-3]研究了四川、浙 江、广西等山区放养鸡适宜密度及放养鸡对土壤肥力和后期 作物生长的影响,但苏州对这方面的研究较少。苏州地势低 平,平原居多,水网密布,许多养鸡企业为提高鸡肉品质和养 鸡经济效益,选择林下放养模式。但放养过程中,未对果园 的土壤物理性质采取相关保护措施。笔者选址林下养鸡企 业较多的常熟,研究不同放养鸡密度对果园土壤物理性质的 影响,筛选出对果园土壤物理性质影响较小、经济效益较好 的话官放养密度,旨在为苏州常熟林下养鸡企业的可持续发 展提供借鉴。

1 材料与方法

- **1.1 试验地概况** 试验地在江苏省常熟市浦苑生态园。选择种植果树 10 a,且均未放养过鸡的枣园。
- **1.2** 试验设计 共设5个处理:处理①,0只/hm²(CK);处理②,1200只/hm²;处理③,1800只/hm²;处理④,2400

基金项目 苏州市农业委员会与苏州农业职业技术学院院区结对科技 为农服务项目(jd201518,jd201612);2016 年江苏省林业三 新工程项目[LYSX(2016)27]。

作者简介 黄小洋(1974-),男,江西九江人,讲师,硕士,从事农业 环境保护教学与研究。

收稿日期 2016-09-12

只/hm²;处理⑤,3 000 只/hm²。每个处理面积为7.5 hm²,2 次重复,每处理各重复之间均安装隔离网。林下鸡的放养时间设定夏、秋季8~10 h/d,冬、春季6~8 h/d,遇恶劣天气(雨、雪和低温天气)不放养。2015年10月14日开始放养鸡,鸡苗质量均为1.0 kg/只,2016年2月3日全部出售(2.0 kg/只左右),次日全部放养新鸡苗。

- **1.3 土样采集** 除 2016 年 2 月(春节)外,2015 年 10 月至 2016 年 4 月每月择期用 5 点取样法采集枣园 0~20 cm 土层 的土壤样本进行物理性质分析,共 6 次。
- **1.4 测定项目与方法** 采用 SX711 型 pH 计测定土壤 pH; 采用环刀法测定土壤总空隙度和土壤容重。

土壤自然含水率(%) = (环刀内湿土重 - 环刀内干土 重)×100/环刀内湿土重

土壤容重 (g/cm^3) = 环刀内鲜土重×100/[环刀体积×(100+土壤自然含水率)]

土壤总孔隙度(%) = (土壤密度 - 土壤容重) × 100%/ +壤密度

有效孔隙度(%)=土壤田间持水量×土壤容重非有效孔隙度(%)=土壤总孔隙度-有效孔隙度式中,土壤密度为 $2.65~g/cm^3$ 。

- **1.5** 数据分析 数据统计与方差分析采用 Excel 软件。
- 2 结果与分析
- 2.1 枣园林下养鸡对土壤 pH 的影响(图 1) 2015 年 10 月 13 日至 2016 年 4 月 15 日处理②、③、④、⑤的 pH 分别较 CK 下降了 0.38%、0.28%、0.54% 和 0.41%,其中处理③下降幅度最小。各处理下降幅度与放养密度呈非线性关系。方差分析表明,其他各处理的 pH 与 CK 达差异极显著水平(*P* < 0.01)。
- **2.2 枣园林下养鸡对土壤自然含水量的影响** 从图 2 可见,2015 年 10 月 13 日至 2016 年 4 月 15 日除 CK 外,其余处

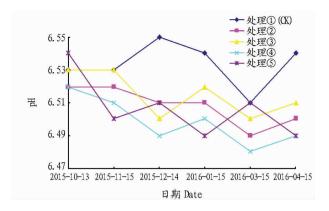


图 1 各处理枣园土壤 pH 变化

Fig. 1 The variation of soil pH in each treatment in jujube garden

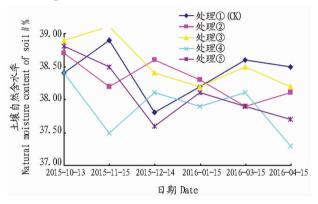


图 2 各处理枣园土壤自然含水量变化

Fig. 2 The variation of soil natural moisture content in each treatment in jujube garden

理的土壤自然含水量总体呈小幅下降趋势,中期出现一定幅度的波动。处理⑤和④的下降幅度略大于处理③和②。方

差分析表明,处理②、③、④、⑤与 CK 的土壤自然含水量差异不显著(P>0.05)。这可能是由于常熟紧临长江,2015年11月至2016年4月降水频率较高,部分取土时间恰逢降雨后不久。

2.3 枣园林下养鸡对土壤容重的影响 从图 3 可见,2015 年 10 月 13 日至 2016 年 4 月 15 日处理②、③、④、⑤的土壤容重均呈增大趋势,2016 年 4 月 15 日土壤容重分别较 2015 年 10 月 13 日增加 1. 16、0、1.72 和 2.91 百分点,增加幅度从大到小依次为处理⑤、④、②、③。方差分析表明,各处理与CK的土壤容重差异显著(P<0.05)。这表明放养鸡会导致枣园土壤容重增大,随着鸡放养密度的增大,放养林地的土壤容重也呈增大趋势。因此,在没有其他改善措施的前提下,适宜的放养密度是保持适宜土壤容重的关键。

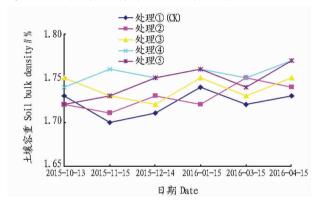


图 3 各处理枣园土壤容重变化

Fig. 3 The variation trend of soil bulk density in jujube garden 2.4 枣园林下养鸡对土壤孔隙度的影响 由表 1 可知,各处理总孔隙度、有效孔隙度和非有效孔隙度均低于 CK,其中处理④最小,分别较 CK 低3.6%、2.1% 和7.2%。

表 1 不同放养密度对枣园土壤物理性质的影响

Table 1 Effects of different stocking density on soil physical properties of jujube garden

处理 Treatment	总孔隙度 Total porosity		有效孔隙度 Effective porosity		非有效孔隙度 Non effective porosity	
	平均值 Mean	变化率 Change rate	平均值 Mean	变化率 Change rate	平均值 Mean	变化率 Change rate
①(CK)	35.03	_	24.87	_	10.16	_
2	34.78	-0.7	24.79	-0.3	9.99	-1.7
3	34.40	-1.8	24.69	-0.7	9.71	-4.4
4	33.77	-3.6	24.35	-2.1	9.43	-7.2
<u>⑤</u>	34. 15	-2.5	24.61	-1.1	9.55	-6.0

3 结论与讨论

(1)该研究表明,鸡放养密度为1200、1800、2400和3000只/hm²的枣园土壤 pH分别较对照下降0.38%、0.28%、0.54%和0.41%,其中放养密度为1800只/hm²的地块下降幅度最小,2400只/hm²放养密度的地块下降幅度最大,3000只/hm²放养密度的地块下降幅度次之。曾祥艳等^[4]在荔枝林、芒果林和速生桉树林下进行了放养鸡试验,林东等^[5]进行了梨树下放养鸡试验,结果表明,林下养鸡会使土壤 pH降低,这与笔者的研究结果类似。但刘霞婷^[6]对核桃林和竹林下养鸡的研究表明,林下养鸡会导致土壤 pH上升,这与笔者的研究结果相反。

(2)枣园林下养鸡会导致土壤容重增大,且随着放养密度的增大,土壤容重也相应呈增大趋势,且放养密度为1800只/hm²的土壤容重增加幅度最小。该试验地土壤容重为1.70~1.80g/cm³,而其他地区的土壤容重为1.50g/cm³以下[3-5,7]。原因可能是该试验地种植枣树至今已达10a之久,在枣园管理过程中,为减少林下杂草对果园肥料的消耗,一直用除草剂控制林下杂草的生长。因此,枣园土壤容重可能与林下无杂草有一定关系[8]。土壤自然含水量、总孔隙度、有效孔隙度和非有效孔隙度均随放养密度的增大而呈下降趋势。这说明放养密度越小,对土壤物理性质的影响程度(下转第144页)

表 1 不同肥料配方处理的香石竹植株形态指标

Tabla 1	Morphological index	of Dianthus of	revanhullus trooted b	v different fertilizer tr	ootmonte

处理 Treatment	株高 Plant height cm	茎粗 Stem diameter cm	叶片长度 Leaf length cm	花蕾直径 Bud diameter cm	根冠比 Root-shoot ratio g	干物重 Dry weight g
1	79. 23 ± 1. 11 ab	0.69 ±0.05 b	13.27 ±1.07 a	2.24 ±0.06 b	0.42 ±0.02 a	0.34 ± 0.06 b
2	82.37 ± 2.37 a	$0.79 \pm 0.04 \text{ a}$	$11.33 \pm 0.61 \text{ b}$	2.41 ± 0.03 a	$0.35 \pm 0.04 \text{ b}$	0.56 ± 0.03 a
3	$76.60 \pm 1.51 \text{ b}$	$0.66 \pm 0.02 \text{ b}$	12.63 ± 0.74 ab	$2.25 \pm 0.06 \text{ b}$	$0.33 \pm 0.03 \text{ b}$	$0.34 \pm 0.06 \text{ b}$
4 (CK)	$34.90 \pm 4.25 \text{ c}$	$0.49 \pm 0.36 \text{ c}$	$8.90 \pm 0.20 \text{ c}$	$1.85 \pm 0.05 \text{ c}$	$0.31 \pm 0.03 \text{ b}$	$0.24 \pm 0.04 \text{ c}$

注:同列不同小写字母处理间在 0.05 水平差异显著。

Note; Different lowercases in the same column stand for significant difference at 0.05 level among treatments.

- 2.4 不同肥料配方对香石竹花蕾直径的影响 由表 1 可知,3 个不同肥料配方处理与 CK 的花蕾直径差异显著,处理②的花蕾直径为 2.41 cm,显著大于处理①、③和 CK,CK 的花蕾直径显著小于其他 3 个处理。由此可知,处理②对花蕾直径的促进作用明显。
- 2.5 不同肥料配方对香石竹根冠比的影响 由表 1 可知,处理①的根冠比显著大于其他 3 个处理,说明处理①对香石竹的根部发育有明显的促进作用;处理②、③与 CK 之间的根冠比差异不显著。可见,处理①是促进香石竹根部发育有最佳配方。
- 2.6 不同肥料配方对香石竹干物重的影响 由表 1 可知, 3 个不同肥料配方处理与 CK 的干物重差异显著,处理②的 干物重显著大于其他 3 个处理,而处理①与③的干物重差异

不显著。可见,处理②对香石竹干物重的促进作用最明显。

3 小结

试验结果表明,处理①和②均是对香石竹生长发育效果较好的肥料配方,其中处理②效果更显著,处理①次之。这说明大量元素水溶性肥料对促进香石竹生长发育,提高品质效果显著。综合分析,大量元素水溶性肥料是促进香石竹生长发育的最佳肥料配方。

参考文献

- [1] 聂庆娟,王进茂,梁海勇,等. 康乃馨的繁殖[J]. 河北林果研究,1997 (1):97-100.
- [2] 王周峰. 鲜切花香石竹栽培管理技术[J]. 科学种养,2015(3):24-25.
- [3] 郭志刚,张伟. 花卉生产技术原理及其应用丛书:香石竹[M]. 北京:中国林业出版社,2001;3-4.
- [4] 陈俊愉,程绪珂.中国花经[M].上海:上海文化出版社,1990:172.

(上接第136页)

就越小。鸡粪含有丰富的氮、磷、钾和其他植物必需养分,是优质的有机肥料^[9],但有学者认为在同一地点长期放养鸡会造成土壤板结,甚至可能影响植物生长^[10-11],这可能与林下养鸡密度过大有关。

(3)果园林下养殖虽有较好的经济效益和社会效益,但 也可能存在潜在的环境危害。姚丽贤等[12]研究表明,集约 化养鸡的鸡粪不但含有比传统养殖更高的氮、磷、钾等养分 含量,还含有较高的铜、镉、砷等重金属,长期施用禽畜粪肥 可能会导致重金属在土壤中累积[13]。因此,林下养鸡应因地 制宜地选择养鸡密度。吕向楠[14]在川西低山橘林下养鸡, 最高放养密度为2400只/hm²;陈俊华等[7]在川中丘陵柏木 林下养鸡,最高放养密度达到 1 500 只/hm²。从土壤 pH 和 物理性质的变化情况来看,常熟浦苑生态园以放养密度 1800~2400只/hm²为宜;养鸡过程中要注意放养时间的控 制,最好多区轮流放养,并且可以在林下适当种植牧草(如黑 麦草、三叶白等),这样不仅可以改良土壤物理性质,还可以 节省养鸡饲料成本,提高养鸡经济效益和环境效益。笔者只 初步研究了常熟浦苑生态园枣园林下养鸡对土壤物理性质 的影响,而林下养鸡对土壤其他性质的影响以及土壤的改良 措施(如 pH 的改良等)还有待进一步研究。

参考文献

- [1] 魏忠华,李英,郑长山,等. 棉田和果园放养鸡适宜密度的探讨[J]. 畜牧与兽医,2005,37(12):32-34.
- [2] 章学东,楼立峰,严管甦,等. 冬闲田种养草鸡对土壤和后期作物的影响试验[J]. 浙江畜牧兽医,2010,35(2):5-6.
- [3] 刘少华,杜一新,雷沈英,吊瓜园放养鸡对园地土壤肥力的影响研究 [J]. 农技服务,2009,26(11):42,45.
- [4] 曾祥艳,廖健明,韦凤英,等. 林下养鸡对林地土壤特性的影响[J]. 广西林业科学,2014,43(3);292-296.
- [5] 林东,钟林茂,郑鹏,等. 梨树林下养鸡对土壤理化性质的影响[J]. 湖北农业科学,2013,52(18):4346-4350.
- [6] 刘婷霞. 林鸡复合生态系统中生物多样性及土壤肥力的研究[D]. 临安:浙江农林大学,2013.
- [7] 陈俊华,龚固堂,朱志芳,等. 川中丘陵区柏木林下养鸡的生态经济效益分析[J]. 生态与农村环境学报,2013,29(2);214-219.
- [8] 李会科,张广军,赵政阳,等. 渭北黄土高原旱地果园生草对土壤物理性质的影响[J]. 中国农业科学,2008,41(7):2070-2076.
- [9] 邹聪明,胡小东,张云兰,等. 保护性耕作农田耕层土壤养分含量动态变化研究[J]. 农机化研究,2011,32(2):97-101.
- [10] 杨苞梅,宋玉萍,卢维盛,等. 施用鸡粪后土壤磷的累积特征[J]. 土壤通报,2011,42(2):421-425.
- [11] 陶宇航,吴启进. 林下草地散养鸡实用技术[J]. 四川草原,2005(1): 58-61
- [12] 姚丽贤,李国良,党志 集约化养殖禽畜粪中主要化学物质调查[J]. 应用生态学报,2006,17(10):1989-1992.
- [13] 王开峰,彭娜,王凯荣,等. 长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J]. 水土保持学报,2008,22(1):105-108.
- [14] 吕向楠. 川西低山区柑橘林下养鸡对土壤理化性质及果实品质的影响[D]. 雅安:四川农业大学,2014.