普通油茶岑软3号苗木分级研究

唐维龙¹,杨利平²,王华宇²,陈元松¹,赵文东¹,韦长江¹,吴红英²,覃雯霞¹,赵 森³,黄达军¹,许尤厚³*,王鹏良^{3,4}* (1.广西国有三门江林场,广西柳州 545006; 2. 钦州市林业科学研究所,钦州市植物生物技术重点实验室/工程中心,广西钦州 535099; 3. 钦州学院海洋学院,广西北部湾海洋生物养护重点实验室,广西钦州 535011; 4. 广西壮族自治区林业科学研究院,广西特色经济林开发和利用重点实验室,广西南宁 530002)

摘要 [目的]对岑软3号苗木分级进行研究,进一步规范其出圃规格,提高苗木质量。[方法]以1年生的岑软3号嫁接苗为材料,测量其苗高、地径、叶片数等8个性状,利用主成分分析和逐步聚类分析法对苗木质量进行分级。[结果]28对性状组合中有22对存在(极)显著相关;主成分分析提取了前4个主成分,保留了82.8%的信息,地径、苗高、叶片数和上部鲜重为主要指标;逐步聚类将岑软3号苗木分成3类;确定其苗木分级:[级苗的苗高 $H \ge 32.739$ cm,地径 $D \ge 0.410$ cm; \mathbb{I} 级苗的苗高 $H \ge 20.666$ cm,地径 $D \ge 0.323$ cm。[结论]逐步聚类将岑软3号苗木分为3类,其中 \mathbb{I} 级苗5株, \mathbb{I} 级苗29株, \mathbb{I} 级苗38株。

关键词 普通油茶; 岑软 3 号; 苗木分级; 主成分分析; 逐步聚类

中图分类号 S727.32 文献标识码 A 文章编号 0517-6611(2016)32-0155-03

Study on Seedling Grading of the Oil - tea Cultivar Cenruan No. 3

TANG Wei-long¹, YANG Li-ping², WANG Hua-yu², XU You-hou^{3*}, Wang Peng-liang^{3,4*} et al (1. Sanmenjiang State-owned Forestry Farm, Liuzhou, Guangxi 545006; 2. Qinzhou Key Laboratory of Plant Biotechnology Research, Qinzhou Plant Biological Engineering Technology Centre, Qinzhou Forestry Science Research Institute, Qinzhou, Guangxi 535099; 3. Guangxi Key Laboratory of Beifu Gulf Marine Biodiversity Conversation, School of Ocean, Qinzhou University, Qinzhou, Guangxi 535011; 4. Guangxi Key Laboratory of Special Non-wood Forest Cultivation& Utilization, Guangxi Forestry Research Institute, Nanning, Guangxi 530002)

Abstract [Objective] Seedling grading of the oil-tea cultivar Cenruan No. 3 was studied to standardize planting specification, improve the seedling's quality. [Method] 8 traits such as height, ground diameter, leaf number, etc. were measured based on the one-year old grafting seedlings of Cenruan No. 3. Seedlings grading was carried out using the principal component analysis and clustering analysis. [Result] The results indicated that 22 of 28 pairwise traits were (extremely) significant between 8 traits; 4 principal component analysis were extracted with 82.8% information. Height, ground diameter, leaf number and above fresh weight were major indices. The seedlings of Cenruan No. 3 were divided into 3 groups by stepwise clustering; seedling grading was determined as following: I grade $H \ge 32.739$ cm, $D \ge 0.410$ cm, II grade $H \ge 20.666$ cm, $D \ge 0.323$ cm. [Conclusion] The seedlings of Cenruan No. 3 were divided into 3 groups by stepwise clustering, I grade 5 plants, II grade 29 plants, III grade 38 plants.

Key words Camellia oleifera Abel; Cenruan No. 3; Seedling grading; Principal component analysis; Stepwise cluster

油茶(Camellia oleifera Abel)是山茶科常绿木本油料树种^[1],是种子含油量高、有栽培价值的山茶科物种的统称^[2]。油茶主要用于榨/提取高质量的茶油,其剩余物还可以作为优良的工业原料,因而具有非常高的价值。普通油茶是面积最广、总产量最多的1个油茶物种^[3],也是较受重视的油茶物种。2000年前油茶已被开始利用,但当时未受到重视。1949年之后,油茶逐渐受到重视,得到快速恢复和发展,同时油茶遗传改良研究也逐步开展,至今已经选育出了很多品种(农家种)、家系、地方种等^[2,4-5]。

岑软 3 号是由广西林业科学研究院从岑溪软枝油茶优良农家种中筛选而成,其具有生长快,结实早,产量高且稳定,含油率高及适应性广等优点,通过国家林木良种审定(国S-SC-CO-002-2008)。目前,关于岑软 3 号组织培养、繁

基金项目 国家自然科学基金项目(31460208);广西优良用材林资源培育重点实验室开放课题(12A0301);广西优良用材林资源培育重点实验室自主课题(14-A-03-01);广西北部湾海洋珍稀动物养护重点实验室项目(2016ZB02);广西自然科学基金项目(2013GXNSFBA019104);广西高校科学技术研究项目(2013YB252)。

作者简介 唐维龙(1974-),男,广西灌阳人,工程师,从事油茶栽培和 生产工作。*为共同通讯作者,许尤厚,副教授,博士后,从 事分子遗传育种研究;王鹏良,高级工程师,博士,从事分子 遗传育种研究。

收稿日期 2016-09-09

殖技术体系等方面的研究^[6-12]相对比较成熟。苗木质量是造林的基础,直接决定着造林的成活率和初期的生长状况^[13],对苗木质量开展分级研究至关重要。笔者以普通油茶岑软3号优良无性系1年生嫁接苗为材料,对其苗木分级进行研究,以期为岑软3号造林苗木的选择提供科学依据。

1 材料与方法

- **1.1 试验地概况** 2014 年 4 月在广西柳州市国有三门江林 场马步分场进行芽苗砧嫁接,该地区属中亚热带气候区,年 平均气温为 20 $^{\circ}$ C, > 10 $^{\circ}$ C年积温为 6 720 $^{\circ}$ C, 年降雨量为 1 300 $^{\circ}$ C, 700 mm, 年蒸发量为 1 471 $^{\circ}$ C 750 mm。
- **1.2 材料** 试验以岑软 3 号的芽为接穗,以普通油茶种子发芽得到的苗为砧木,将嫁接苗在基质(泥炭土:蛭石:珍珠岩=2:1:1)上培养 1 年。
- **1.3** 调查指标 从培养的苗木中随机抽取 72 株,编号 1 ~ 72,对其苗高 x_1 、地径 x_2 、叶片数量 x_3 、主根长 x_4 、主根数 x_5 、次级根数 x_6 、上部鲜重 x_7 和下部鲜重 x_8 进行测量,获取数据。

1.4 统计分析方法

1.4.1 相关性分析。利用 $R = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$ (I)

分析岑软 3 号嫁接苗苗高、地径、叶片数量、主根长、主根数、次级根数、上部鲜重和下部鲜重各性状之间的相关性。

- 1.4.2 主成分分析。多个性状之间存在一定的相关性,信息上也有一定程度的重叠。性状越多,分析的难度越大,为降低复杂程度,利用主成分分析法在尽可能多地反映原有信息的情况下,将多性状简化为少数几个综合性状。利用 R 语言的 princomp()函数进行主成分分析。
- **1.4.3** 逐步聚类分析。利用逐步聚类分析法对苗木进行分级。苗木单株性状之间的距离为欧式聚类,利用 $d_{ij} = \sqrt{\sum_{i=1}^{n}(x_{ik}-x_{jk})^{2}}$ (II)计算获得,其中 d_{ij} 为单株性状间距离; x_{ik} 为第i个单株第k性状值; x_{jk} 为第j个单株第k性状值。聚类分析采用 R 语言的 kmeans()函数进行分析。
- **1.4.4** 苗木分级。苗高和地径是苗木最容易观测的 2 个指标。由于 2 个性状的量纲不同,为了能进行比较,按 Z_{ii} =

 $\frac{x_{ij}-x_{i(\min)}}{x_{i(\max)}-x_{i(\min)}}$ (**III**)进行标准化,其中 Z_{ij} 为第 i 个单株第 j 性状标准化值; x_{ij} 为第 i 个单株第 j 性状值; $x_{i(\min)}$ 为第 i 个性状的最小值; $x_{i(\max)}$ 为第 i 个性状的最大值。根据逐步聚类分析,

最终分级结果以不同的级最终凝聚中心为圆心,以其 d 为半 径的圆内, $d = \sqrt{KS_{H(\kappa)}^2 + S_{D(\kappa)}^2}$ (IV), 其中 K = 1; $S_{H(\kappa)}^2$ 、 $S_{D(\kappa)}^2$ 为苗高和地径标准化后的标准差平方。

2 结果与分析

2.1 苗木性状的变异分析 由表 1 可知,8 个性状中主根长的变异系数最小(9.304%),上部鲜重的变异系数最大(59.431%),其余 6 个性状的变异系数居于两者之间。这说明不同性状间的变异程度存在很大差异。

表 1 苗木 8 个性状的统计描述

Table 1 The descriptive statistics of 8 seedling traits

参数 Parameter	苗高 Seedling height cm	地径 Ground diameter cm	叶片数 Leaf number 张	主根长 Major root length cm	主根数 Major root number 条	次级根数 Secondary root number 条	上部鲜重 Above fresh weight//g	下部鲜重 Below fresh weight//g
最小值 Minimum	12.000	0.200	3.000	8.200	1.000	2.500	1.600	3.000
最大值 Maximum	44.300	0.520	21.000	13.000	6.000	31.000	23.200	16.300
极差 Range	32.300	0.320	18.000	4.800	5.000	28.500	21.600	13.300
平均值 Mean	22.628	0.337	9.708	10.670	2.306	15.563	4.938	6.921
标准差 Standard deviation	6.511	0.072	3.865	0.993	1.296	6. 124	2.934	2.255
变异系数 Variation coefficient // %	28.775	21.374	39.816	9.304	56.218	39.349	59.431	32.578

2.2 苗木性状的相关性分析 由表 2 可知,在 28 对性状组合相关性分析中,主根长与地径和叶片数、主根数与叶片数和主根长、次级根数与主根长、上部鲜重与主根数 6 对性状组合没有显著相关,苗高与主根数、主根长与上部鲜重和下

部鲜重、主根数与下部鲜重 4 对性状组合为显著相关,其余 18 对性状组合均为极显著相关,其中苗高和上部鲜重相关系 数最大(0.70),苗高与主根数的相关系数最小(0.25)。

表 2 8 个性状间的相关系数

Table 2 The correlation coefficients between 8 traits

参数 Parameter	苗高 Seedling height cm	地径 Ground diameter cm	叶片数 Leaf number 张	主根长 Major root length cm	主根数 Major root number 条	次级根数 Secondary root number 条	上部鲜重 Above fresh weight//g	下部鲜重 Below fresh weight//g
苗高 Seedling height	1							
地径 Ground diameter	0.57 * *	1						
叶片数 Leaf number	0.48 * *	0.53 * *	1					
主根长 Major root length	0.45 * *	0.19	-0.09	1				
主根数 Major root number	0.25 *	0.37 * *	0.19	0.19	1			
次级根数 Secondary root number	0.35 * *	0.42 * *	0.35 * *	-0.05	0.38 * *	1		
上部鲜重 Above fresh weight	0.70 * *	0.59 * *	0.66 * *	0.28 *	0.23	0.38 * *	1	
下部鲜重 Below fresh weight	0.49 * *	0.64 * *	0.52 * *	0.27*	0.28*	0.36 * *	0.49 * *	1

注:**表示极显著水平;*表示显著水平。

Note: * * means extremely significant level; * means significant level.

2.3 主成分分析 由表 3 可知,第 1~4 主成分的累积贡献率为 82.8%,高于 80%。提取第 1~4 主成分,损失的信息为 17.2%,仍能较好地反映出普通油茶岑软 3 号苗木质量的真实情况。第 1 主成分对应的特征向量均为负值,其中苗高、地径、叶片数、上部鲜重和下部鲜重的载荷量为 -0.4左右,主要反映苗木大小信息;第 2 主成分对应的特征向量中,苗高和主根长为正值,叶片数和次级根数为负值,其余均为 0,主根长的特征分量值为 0.807,主要反映整株苗木的长度;第 3 主成分对应的特征向量中,苗高、叶片数和上部鲜重为正

值,主根数和次级根数为负值,其余均为0,主要反映了地上部分的信息;第4主成分对应的特征向量中,苗高、次级根数和上部鲜重为正值,而地径、主根数和下部鲜重为负值,主要反映了次级根和茎生长关系。岑软3号苗木质量的评价公式如下:y=0.475 $y_1+0.152y_2+0.124y_3+0.077y_4$,其中y为岑软3号苗木质量的得分; y_1 为苗木大小信息的得分; y_2 为整株苗木长度的得分; y_3 为地上部分信息的得分; y_4 为次级根和茎生长关系的得分。

表 3 8 个性状的主成分分析

Table 3	The	principal	component	analysis	of 8	traits
---------	-----	-----------	-----------	----------	------	--------

Id. Ib	载荷量 Loadings						
性状 Traits	第 1 主成分 Component 1	第2主成分 Component 2	第3 主成分 Component 3	第4主成分 Component 4			
苗高 Seedling height	-0.412	0.268	0.160	0.363			
地径 Ground diameter	-0.423	0	0	-0.325			
叶片数 Leaf number	-0.371	-0.363	0.349	0			
主根长 Major root length	-0.175	0.807	0	0			
主根数 Major root number	-0.244	0	-0.775	-0.120			
次级根数 Secondary root number	-0.298	-0.374	-0.401	0.483			
上部鲜重 Above fresh weight	-0.426	0	0.284	0.326			
下部鲜重 Below fresh weight	-0.391	0	0	-0.633			
特征根 Eigenvalue	3.799	1.217	0.996	0.616			
贡献率 Proportion	47.5	15.2	12.4	7.7			
累积贡献率 Cumulative proportion	47.5	62.7	75.1	82.8			

2.4 聚类分析和苗木分级 对岑软 3 号苗高、地径等 8 个性状资料数据进行逐步聚类,聚类结果将测定的苗木分为 3 类,其中I级苗 5 株(18、33、34、46、48),Ⅱ级苗 29 株(1、2、4、8、9、12、15、16、17、21、25、26、28、30、31、35、36、37、45、47、51、52、53、57、65、66、67、68、72),Ⅲ级苗 38 株(3、5、6、7、10、11、13、14、19、20、22、23、24、27、29、32、38、39、40、41、42、43、44、49、50、54、55、56、58、59、60、61、62、63、64、69、70、71)。

根据逐步聚类划分的结果,再将各单株的苗高和地径按照公式(III)进行标准化,按不同等级标准化的苗高和地径平均值所在点为圆心,以标准化苗高和地径的方差和的二次方根为半径,以准确确定其临界值。优质苗在左上方,劣质苗在右下方。计算结果表明,I级苗的凝聚中心为 x_1^2 (0.796,0.813), d_1 =0.220,II级苗的凝聚中心为 x_1^2 (0.385,0.552), d_1 =0.204。 I_1 ,II级苗的下限分别为 I_1 (0.642,0.656)、II_(0.268,0.385)。把 I_1 ,II_2代人公式(III)得到岑软3号苗木分级标准如下:I级苗的苗高 $H \ge 32.739$ cm,地径 $D \ge 0.410$ cm; II级苗的苗高 $H \ge 20.666$ cm,地径 $D \ge 0.323$ cm。

3 讨论与结论

苗木分级是对苗木出圃时进行的质量分级评价,苗木质量的高低直接决定造林成活率的高低。在苗木分级研究中,用于分析的指标越多,越能准确地反映苗木的真实信息,也越利于准确分级^[15]。岑软3号具有高产、优质、高抗及适应性广等特性^[14],是华南地区重要的普通油茶品种。在8个性状相关性分析中发现,28对性状组合中,22对存在(极)显著相关,这表明大多数性状间存在相关性,即存在重叠信息。采用主成分分析法降低信息维度,在保留82.8%信息的情况下,提取第1~4主成分,有效地降低了复杂程度。以地径、苗高、叶片数和上部鲜重为主要指标,这与之前报道基本一致^[16-17]。将供试岑软3号苗木通过逐步聚类分为3类,其中Ⅰ级苗5株,Ⅱ级苗29株,Ⅲ级苗38株;得到岑软3号苗木分级标准如下:Ⅰ级苗的苗高 H≥32.739 cm,地径 D≥0.410 cm;

II级苗的苗高 $H \ge 20.666$ cm,地径 $D \ge 0.323$ cm。地径和苗高是反映苗木质量最直接的主要指标,也是最容易测量的指标,所以将苗木质量分解到以苗高和地径为苗木分级的主要衡量指标。该研究得出的岑软 3 号分级标准要高于彭绍峰等 $^{[16]}$ 研究得出的苗木分级标准,这可能是由于供试材料为单一品种,可以有效去除由不同基因型导致的苗木大小不同的因素。研究测定的 8 个性状为苗木分级提供了较为充足的信息,为岑软 3 号苗木质量分级的可靠性提供较好的数据支撑。

参考文献

- [1] 黎先胜. 我国油茶资源的开发利用研究[J]. 湖南科技学院学报,2005, 26(11):127-129.
- [2] 陈永忠,杨小胡,彭邵锋,等. 我国油茶良种选育研究现状及发展策略 [J]. 林业科技开发,2005,19(4):1-4.
- [3] 庄瑞林. 中国油茶[M]. 2版. 北京:中国林业出版社,2007.
- [4] 庄瑞林. 我国油茶良种选育工作的历史回顾与展望[J]. 林业科技开发,2010,24(6):1-5.
- [5] 张乃燕,蒙勒彪,江泽鹏,等,广西油茶杂交育种研究现状与发展思路 [J]. 林业科技开发,2008,22(3):6-9.
- [6] 蔡玲,王以红,吴幼娟,等. 油茶胚组织离体培养实验[J]. 西部林业科学,2012,41(3):66-69.
- [7] 蔡玲,吴幼媚,王鹏良,等. 几种因子对油茶组培芽增殖与生长的影响[J]. 广西林业科学,2014,43(2):142-154.
- [8] 王以红,吴幼媚,蔡玲,等. 油茶岑软 3 号芽器官离体培养再生植株的研究[J]. 西部林业科学,2011,40(4):1-4.
- [9] 吴幼娟,王以红,蔡玲,等.油茶单芽组培生根研究[J].西部林业科学, 2012,41(4);25-28.
- [10] 赵海鹤,黄欣,刘学勇,等.不同轻基质配方对油茶全光照扦插生根的影响[J]. 热带农业科学,2013,33(5):12-16.
- [11] 侯立英,张乃燕. 油茶芽苗砧嫁接育苗技术[J]. 广西林业科学,2011,40(3):240-242.
- [12] 蔡玲,吴幼媚,王以红,等. 油茶组培继代芽嫁接技术[J]. 林业科技开发,2011,25(6):105-107.
- [13] 常培英,刘曼玲. 苗木分级方法比较[J]. 山西农业大学学报(自然科学版),1984,4(2):198-215.
- [14] 冼旭勋. 全国最高产的油茶——岑软 2 号、3 号高产无性系[J]. 广西 林业,1988(2):21.
- [15] 蒋水元,李虹,黄夕洋,等,两面针苗木分级标准的研究[J]. 福建林业科技,2010,37(4):87-90.
- [16] 彭邓锋,陈永忠,杨小胡,等.油茶苗木质量分级标准研究[J].中国农学通报,2012,28(25):101-105.
- [17] 李鹏,刘济明,欧国腾,等.大果木姜子苗木的评价及分级标准[J]. 江 苏农业科学,2014,42(9):223-225.

(上接第141页)

- [6] 王泉, 左志宇, 宋晓涛, 等. 百合科多肉植物美吉寿的组织培养与快速繁殖[J]. 植物生理学报, 2008, 44(1):123-124.
- [7] 牟豪杰,徐刚,汪一婷,等. 多浆植物组培苗移栽技术初探[J]. 浙江农
- 业科学, 2005(6):450-451.
- [8] 杜泽湘. 石榴新品种"九州红"组织培养及快繁技术研究[J]. 安徽农业科学, 2013,41(9);3770-3771.