常见坚果壳的元素组成・纤维素含量和结晶度分析

杨护霞,许艳,方兴,吴道荣,龙花,杨婵 (保山学院理工学院,云南保山 678000)

摘要 [目的]对5种常见坚果壳的元素组成、纤维素含量和结晶度进行分析。[方法]采用X射线衍射技术按照高度法、切线法、分峰面积法3种方法对坚果壳中的纤维素的结晶度进行了分析,采用X射线光电子能谱技术对坚果壳的成分和原子比进行了分析。[结果]X射线衍射测试结果表明,板栗、花生、瓜子、夏威夷果和核桃皮层纤维素的结晶度不同,结晶度变化趋势相同;X射线光电子能谱测试结果表明,这5种坚果壳主要是由C、O、N、Si元素组成,成分含量有差异。夏威夷果壳的结晶度最大,板栗壳原料纤维素结晶度最小;花生中的氮元素含量最高,原子百分比达到3.78%,花生中的O/C和N/C比值最大,分别达到0.29和0.05,Si/C原子比最高的是花生壳。[结论]该研究结果可为硬果壳的综合开发利用提供依据。

关键词 X射线技术;坚果壳;纤维;结晶度;成分

中图分类号 S789.5 文献标识码 A 文章编号 0517-6611(2016)17-021-03

Analysis on Element Composition, Cellulose Content and Crystallinity of the Common Nut Shells

YANG Hu-xia, XU Yan, FANG Xing et al (Baoshan University of Technology, Baoshan, Yunnan 678000)

Abstract [Objective] The aim was to analyze element composition, cellulose content and crystallinity of 5 common net shells. [Method] According to the height method, the tangent method, the peak area method, crystallinity of cellulose of net shells were analyzed by X – ray diffraction (XRD). The composition and atomic ratio of the nut shell were studied by X ray photoelectron spectroscopy. [Result] The results showed that the crystallinity of cellulose in chestnut, peanut, sunflower, Hawaii nut and walnuts cortex were in varying degrees, the change was in the same tendency; X – ray photoelectron spectroscopy indicated that the shell of a nut was mainly composed of C, O, N, Si, and there were differences in content. The crystallinity of Hawaii shell was maximum, and that of chestnut shell cellulose was minimum; N content in peanut was the highest, atomic percentage reached 3.78%, O/C and N/C ratio in peanut was maximum, respectively, reached 0.29 and 0.05. The Si/C atomic ratio was the highest in the peanut shell. [Conclusion] The results can provide basis for comprehensive development and utilization of hard shell.

Key words X - ray spectroscopy; Nut shell; Cellulose; Crystallinity; Component

坚果是植物的一类果实,果皮坚硬,内含一粒种子,主要 有夏威夷果、核桃、板栗、花生、葵花子、白果、腰果、榛子和开 心果等。坚果是植物精华部分,营养价值丰富,含有丰富的 蛋白质、脂肪、矿物质和纤维素,对人体生长发育、增加体质 和预防疾病有较好的功效。坚果分为果仁和果壳2个部分, 食用的主要是果仁,果壳绝大多数被废弃或烧掉,还有部分 用于填充物、堆肥及药用功能,极少部分进行深加工,造成资 源浪费,随着绿色低碳生活成为社会主流,废物再利用越来 越受到人们重视。目前,国内对硬果壳深加工利用报道较 少。笔者对云南隆阳区5种坚果壳夏威夷果、核桃、板栗、花 生、葵花子的元素组成、纤维素含量及结晶度进行了分析,旨 在为硬果壳的综合开发利用提供依据。

1 材料与方法

1.1 试验材料 板栗、花生、瓜子、夏威夷果和核桃均购自 当地农贸市场,用自来水洗涤干净后,经过粉碎机粉碎后过 200 目筛后备用。

1.2 试验方法

1.2.1 结晶度测试。Ultima IV 型 X 射线衍射仪,由日本 Rigaku 公司生产。X 射线源为 Cu 靶(CuK_α = 1.540 56Å),镍 滤波片,管压 40 kV,管流 30 mA。广角测试条件:步长0.05°, 扫描速度为 5°/min,采用 D/teX Ultra 高速探测器接收衍 射线。

1.2.2 结晶度分析方法。X-射线衍射是常见的测定纤维素结晶度的方法。X射线的波长短,穿透能力强,它不仅能

使晶体表面的原子成为散射波源,而且还能使晶体内部的原 子成为散射源。不同晶系的晶体或者同一晶系而晶胞大小 不同的晶体,其衍射花样是不同的。因此 X - 射线衍射能够 很好地表征晶体的结晶度。纤维素结晶度在一定程度上反 映纤维的物理力学和化学性能,也直接影响材料的性能,是 评价生物质材料性质和纤维品质的重要依据[1]。纤维素的 结晶度是指纤维素中结晶部分质量与纤维素总的质量的百 分比。纤维素是由结晶区和非结晶区交错联结构成,在结晶 区内纤维素链状分子排列规则,结合紧密,相干干涉在结晶 区产生波峰,呈现清晰的 X 射线衍射,而在非结晶区内纤维 素链状分子排列不整齐,结合松驰,会发生漫反射,不会产生 波峰。通过测定各入射角和相应的 X 射线衍射强度,绘制 X 射线衍射强度曲线,可以计算纤维素相对结晶度^[2-3]。计算 结晶度的方法有高度法、切线法、分峰法和 Ruland 法等。 ①高度法。此方法是利用 Segal 等^[4] 提出的经验结晶指数 Crtl,对于天然纤维素(纤维素 I)高度法:对相应位置的衍射 峰强度相对大小进行计算,在扫描曲线 20 = 22°附近有 (002) 衍射的极大峰值,2e = 18°附近有1个小峰值,据此计 算出纤维素相对结晶度的数值,结晶度 X_c 的计算公式为: $X_{c} = I_{002} - I_{am}I_{002} \times 100\%$ 。式中, I_{002} 为(002)晶面衍射强度; I_m为非晶区衍射强度,对于纤维素 I,非晶区衍射强度 I_m为 $2\theta = 18°$ 处的衍射强度。②切线法。7个点 Savitzky – Golay 平滑后扣按切线法扣背景,纤维素的结晶度按照以下公式计 算: $X_c = I_{002} - I_{am}I_{002} \times 100\%$ 。③分峰法^[5-6]。在X射线衍射 图谱中,结晶峰与非晶峰几乎是完全重合或者大部分重叠, 衍射曲线使用 PeakFit 4.12 软件采用 Lorentzian 函数进行分

作者简介 杨护霞(1979 -), 女, 云南保山人, 讲师, 硕士, 从事原子物 理与固体物理的教学与科研工作。
收稿日期 2016-04-23

峰,将 X 射线衍射强度曲线准确地分解为结晶部分与非结晶 部分。4 个结晶峰对应 101、101、002、040 晶面,无定形的结 晶峰的最大值对应于 101 和 002 晶面之间的波谷。结晶度 的计算公式如下: $X_d = S_{cr}S_{am} + S_{cr} \times 100\%$ 。式中, S_{am} 是无定 形峰的面积, S_{cr} 是结晶峰的面积之和。

1.2.3 表面测试。在超高真空环境下,利用 X 射线照射样 品表面,产生光电效果激发光电子释放到真空中。观测光电 子的运动能量后,可获取样品表面的元素组成和化学状态的 相关信息^[7]。采用英国 Kratos 公司 AXIS Ultra 型 X 射线光 电子能谱仪进行分析。样品用单色化的 Al kα 射线(1 486.6 eV)激发, X 射线源功率为 150 W,本底真空优于 1 × 10⁻⁹ Pa。用污染碳 C1s(284.8 eV)进行样品结合能(EB)荷电校 正。宽谱扫描通能为 80 eV,步长为 0.5 eV;精细谱图扫描通 能 20 eV,步长为 0.1 eV。

2 结果与分析

2.1 结晶度分析 纤维素存在 5 种结晶变体,即纤维素 I、 Ⅱ、Ⅲ、Ⅳ 和 X,这 5 种晶型有不同的晶胞结构,在一定条件下 结晶变体间可发生相互转化。常见的纤维素主要是纤维素I 和纤维素Ⅱ。天然纤维素一般为纤维素I,可以用 XRD 图谱 来区别二者。

从图 1 可以看出,所有样品均在衍射角为 16.6°、 21.48°、34.67°附近有明显衍射峰出现。原始的坚果壳都属 于纤维素 I 型。 从图 2 和表 1 可以看出,使用不同软件处理后得出的 结晶度值不同,分峰面积法得出的值最大,切线法次之,高 度法最小。分析纤维素的 X 射线衍射图切线法是去除背景 后计算,*I*₀₀₂与 *I*_{am}差值变化不大,但是 *I*₀₀₂的数值变小,结晶 度值变大。高度法和切线法仅仅考虑了(002)衍射峰的影 响,而分峰法中考虑了所有衍射峰对结晶度的贡献,因此计 算出的数值偏大。这 3 种方法计算出的结晶度的大小趋势 相同,夏威夷果壳的结晶度均最大,板栗壳原料纤维素值结 晶度最小。

注:a. 板栗;b. 花生;c. 瓜子;d. 夏威夷果;e. 核桃。

图 1 不同坚果壳的 X 射线衍射结果 ig 1 X rev different of different put sh

注:a. 高度法计算结晶度;b. 切线法计算结晶度;c. 分峰法计算结晶度。

Note: a. Calculation of the crystallization degree with the height method; b. Calculation of the degree of crystallization with the tangent method; c. Calculation of the degree of crystallization with sub peak method.

	출 4	AKD的结晶度分析
Fig. 2	Ana	lysis of crystallinity of XRD

表 1 5 种坚果壳的 XRD 结晶度分析					
Table 1 Analysis of crystallinity of XRD of 5 kinds of nut shell					
名称 Name	$X_{_{d1}} / / \%$	$X_{d2} / / \%$	$X_{d3} / / \%$		
板栗壳 Chestnut shell	23.25	31.16	65.68		
花生壳 Peanut shell	26.85	38.47	77.61		
瓜子壳 Sunflower shell	29.11	39.93	79.10		
夏威夷果壳 Hawaii nut shell	30.61	43.55	79.18		
核桃壳 Walnut shell	23.69	32.14	74.56		

2.2 表面组成分析 从图 3 可以看出,壳层的 XPS 图中出 现 3 个较强的峰,峰位分别处于 532、398 和 285 eV 附近,归 属于 O 1s、N 1s 和 C 1s,证实壳层中含有大量的 C、O、N 元素。

根据宽谱的峰位和峰面积,利用每个元素的结合能及其 灵敏度因子对坚果壳样品进行半定量分析,确定坚果壳粉末 的组成及原子数比。从表2可以看出,5种坚果均含有C、O、 N、Si元素。花生壳中的氮元素含量最高,原子百分比达到 3.78%。从其他元素与碳元素的比值可以看出,花生中的 O/C和N/C比值最大,分别达到0.29和0.05,Si/C原子比 最高的是花生壳。

Note: a. Chestnut; b. Peanut; c. Sunflower; d. Hawaii nut; e. Walnut.

注;a. 板栗;b. 花生;c. 瓜子;d. 夏威夷果;e. 核桃。

Note: a. Chestnut: b. Peanut: c. Sunflower: d. Hawaii nut: e. Walnut.

图 3 不同坚果壳的宽扫描 XPS 谱

Fig. 3 Wide scanning XPS spectrum of different nut shells 表 2 不同种类的坚果壳层的表面化学组成和相对含量

Table 2 Surface chemical composition of the shell of different kinds of nuts and relative content

坚果壳种类 Nut shells	$n_c / / \%$	$n_o / / \%$	$n_{_N}/\!/\%$	n_{Si} // %
板栗 Chestnut	80.26	17.28	1.61	0.85
花生 Peanut	74.16	21.72	3.78	0.34
瓜子 Sunflower	78.86	18.13	2.59	0.42
夏威夷果 Hawaii nut	79.15	18.92	1.67	0.26
核桃 Walnut	78.84	19.32	1.67	0.16

290 288 286 284 282 292 结合能 Binding energy // eV

選度 Intensity # Au

3

结论

注:a. 板栗;b. 花生;c. 瓜子;d. 夏威夷果;e. 核桃。

Note: a. Chestnut; b. Peanut; c. Sunflower; d. Hawaii nut; e. Walnut.

图4 坚果壳的高分辨 C 1s 谱

292 290

Fig. 4 High resolution C 1s XPS spectra of nuts

子比最高的是花生壳。

参考文献

该试验结果表明,板栗、花生、瓜子、夏威夷果和核桃皮 层纤维素的结晶度不同,利用不同方法计算的结晶度大小趋 势相同,夏威夷果壳的结晶度最大,板栗壳原料纤维素值最 小。坚果壳主要是由 C、O、N、Si 元素组成,成分含量有差异。 花生壳中的氮元素含量最高,原子百分比达到 3.78%,花生 中的 O/C 和 N/C 比值最大,分别达到 0.29 和 0.05,Si/C 原

[1] FOCHER B, PALMA M T, CANETTI M, et al. Structural differences between non-wood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry [J]. Industrial crops and products, 2001,13:193-208.

[2] 蔺涛,郭文静,方露,等.3 种方法计算棉杆纤维素结晶度的比较分析 [J]. 东北林业大学学报,2013,41(2):89-92.

电子结合能与所结合的原子或原子团有关,用样品C1s 精细的碳谱峰的结合能和化学位移来进一步确定坚果壳的 碳成分的形态^[1,8]。试验中使用 XPS Peak 软件对曲线进行 拟合分峰,碳的不同状态使用 C1、C2和 C3表示。从图 4 可 以看出,结合能 284.8 eV 的特征 C₁ 峰归属于坚果壳中的 C -H键以及表面的碳烃污染。C,的结合能位于286.45 eV 附近,属于C-0键产生,羟基电负性大,因此结合能增大。 C,的结合能位于288.45 eV附近,属于C与双原子链接键 产生。

从表3可以看出,板栗、花生、瓜子、夏威夷果和核桃壳 中碳的形态主要是由 C1、C2 和 C33 种形态。

表3 不同种类坚果壳 C 1s 的 XPS 测试结果 Table 3 C 1s XPS spectra with different nut shells

坚果壳种类 Nut shalls	结合能 Binding energy E//eV			A // %		
That shells -	$C_1 1s$	$C_2 1s$	C ₃ 1s	C ₁ 1s	$C_2 1s$	C ₃ 1s
板栗 Chestnut	284.8	286.28	286.93	63.18	17.70	19.12
花生 Peanut	284.8	286.24	286.79	48.93	16.34	34.73
瓜子 Sunflower	284.8	286.25	288.07	61.99	25.94	12.07
夏威夷果 Hawaii nut	284.8	286.25	287.70	54.58	30.85	14.57
核桃 Walnut	284.8	286.22	287.10	55.22	23.17	21.61

随着试验的进行,各组 pH 均略微降低,其降低幅度从大到小 依次为:A 组、B 组、C 组、D 组、E 组。这说明生物滤池净化 过程会导致 pH 缓慢降低,添加 Na₂CO₃ 会在一定程度上缓 解降低的趋势。

表1 试验不同阶段各组的 TAN 和 $NO_2^- - N$ 去除率

Table 1 The removal rates of TAN and NO₂⁻ – N in each group during the experiment

组别 Crown	TAN z Removal rate	去除率 of TAN//%	NO ₂ ⁻ -N 去除率 Removal rate of NO ₂ ⁻ -N//%		
oroup	6 h	12 h	6 h	12 h	
A组Group A	66.79	89.06	43.17	93.17	
B组Group B	69.39	88.78	55.95	94.76	
C组 Group C	81.66	93.43	76.10	99.27	
D组Group D	81.45	95.22	77.31	99.27	
E 组 Group E	72.92	92.61	59.51	98.78	

图4 不同试验阶段各组 pH 的变化

Fig.4 Change of pH in each group during the experiment 3 讨论

该研究结果表明,与对照组相比,在养殖废水中添加适量 Na₂CO₃,虽然不会显著增强生物滤池对 TAN 和 NO₂⁻ - N 的去除效果,但会在短时间内加快硝化反应的进行。究其原因,可能是因为添加适量 Na₂CO₃ 会导致水体 pH 缓慢升高。 pH 作为一个重要的环境因子,可以影响硝化细菌的细胞膜 电荷和有关代谢酶的活性,从而影响硝化细菌的活性和生长 速度^[7]。据报道,生物滤池中硝化细菌的最适 pH 范围为 7~8,短程硝化工艺最适 pH 一般在 7.5 左右^[8]。该试验结 果也证实了这一点,B 组、C 组和 D 组经过处理后,pH 分别 为7.19、7.31 和7.80,经过 6 h 反应,C 组、D 组硝化反应速 率快于其他组,说明 C 组、D 组 pH 较其他组更加适合硝化细

(上接第23页)

- [3] 汪佑宏,刘杏娥,江泽慧,等.利用X射线衍射技术分析黄藤材微纤丝 角、结晶度及射线的影响[J].光谱学与光谱分析,2010,30(5):1404-1407.
- [4] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer [J]. Textile resource journal, 1959, 29:786 – 794.
- [5] 宣艳,孙海军,杨静,等.利用X射线技术研究甘蔗皮的纵向变异特性 [J].甘蔗糖业,2015(1):15-19.

菌的生存。E 组添加 Na₂CO₃ 量较多,导致添加后 pH 升至 8.35,虽然此 pH 超出了硝化细菌最佳生长范围,但是 E 组硝 化反应速率比对照组快。这可能是因为硝化反应是一个消 耗水体碱度的过程,硝化细菌通过硝化反应将 1 g 氨氮氧化 成硝酸盐,需要消耗 7.07 g CaCO₃ 碱度 和产生 5.85 g CO₂^[9]。E 组添加 Na₂CO₃ 后碱度增加,满足了硝化反应的需 要,在一定时间内加快了硝化反应的进行;对照组未添加 Na₂CO₃,其水体碱度可能在一定程度上限制了生物滤池硝化 反应的速率。

在 RAS 中,生物滤池净化水质的过程中微生物会代谢 产生大量的 CO₂,导致养殖水体 pH 缓慢下降。该试验过程 中系统经过 12 h 运转,各试验组 pH 较运行开始阶段均有不 同程度下降,其中对照组下降幅度最大,各处理组 pH 下降幅 度随着 Na₂CO₃ 添加量的增加而变小。这表明在水体中添加 Na₂CO₃,在增加水体 pH 的同时,也增加了水体对酸性物质 的的缓冲能力,使水体 pH 可以维持较长时间稳定,有利于养 殖对象的健康生长。

4 结论

该研究结果表明向养殖废水中加入 Na₂CO₃,不会明显 增强生物滤池对 TAN 和 NO₂⁻ - N 的去除效果,即硝化反应 的强度,但会在一定时间内加快硝化反应的进行;处理组 C 组,Na₂CO₃ 的添加量为 80 mg/L,在试验进行到 6 h 时,生物 滤池硝化反应速率快于其他组,当试验结束时各组之间差异 不明显。添加 Na₂CO₃ 能提高水体 pH,且添加量越高,pH 的 下降趋势随着反应的进行就越缓慢。

参考文献

- [1] 宋红桥,宋红桥,管崇武. 循环水养殖系统中水处理设备的应用技术 [J]. 安徽农学通报,2011(21):112-115,117.
- [2] 丁彦文,艾红. 微生物在水产养殖中的应用[J]. 湛江海洋大学学报, 2000(1):68-73.
- [3] 刘瑞兰. 硝化细菌在水产养殖中的应用[J]. 重庆科技学院学报,2005
 (1):67 69.
- [4] 刘存仁,白亚荣.pH 值对渔业生产的影响及决定因素[J].现代农业, 2007(3):27.
- [5] 张甫英,李辛夫.低 pH 对鱼类胚胎发育、鱼苗生长及鳃组织损伤影响的研究[J].水生生物学报,1992(2):175-182.
- [6] 卢玲,卢健民,蔺玉华,等.低 pH 对鲤鱼血液电解质影响的研究[J].水 产学杂志,2000(2):42-46.
- [7] ZHENG P, XU Y, HU L. The new theory and technology used biology to remove nitrogen[M]. Beijing: Science Punishing Company, 2004:27 – 28.
- [8] 石驰.曝气生物滤池运行影响因素试验研究[D].镇江:江苏大学, 2007:25-32.
- [9] TIMMONS M B, EBELING J M. Recirculating aquaculture [M]. NY: Cayuga Aqua Ventures, 2007: 39 – 541.

- [6] 刘杏娥,杨喜,杨淑敏,等.梁山慈竹纤丝角的X射线衍射技术解析及 拉伸力学的影响[J].光谱学与光谱分析,2014,34(6):1698-1701.
- [7] PARK S, JOHN O B, HIMMEL E M, et al. Cellulose crystallinity index: Measurement technoquees and their impact on interpreting cellulose performance [J]. Biotechnology for biofuels ,2010,3(10);1-20.
- [8] DESMENT T C, POLEUNIS A, et al. Double protein functionalized poly-εcaparolactone surfaces; In depth ToF-SIMS and XPS characterization [J]. Journal of materials science; Materials in medicine, 2012, 23;293 – 305.