低温胁迫下水稻基因组 DNA 甲基化的 MSAP 分析

王亚男,范思静 (安徽金培因科技有限公司,安徽合肥 230088)

摘要 [目的]研究低温胁迫对水稻幼苗 DNA 甲基化水平及模式变化。[方法]以水稻幼苗为材料,利用66 个不同的引物组合对来自对 照(CK)、4 ℃低温胁迫1 d(T₁)、4 ℃低温胁迫2 d(T₂)、4 ℃低温胁迫3 d(T₃)和恢复2 d(T₄)的水稻 DNA 样品进行甲基化敏感扩增多 态性(MSAP)分析,探讨低温胁迫和恢复后,DNA 的甲基化水平及模式变化。[结果]甲基化水平分析表明,CK、T₁、T₂、T₃处理样本中总 甲基化率分别为37.19%、33.79%、33.67%和32.67%。进一步分析表明低温胁迫处理导致水稻 DNA 总甲基化水平降低,然而恢复处理 组(T₄)减缓了这种趋势。[结论]水稻基因组部分位点的甲基化可能参与了水稻对低温胁迫的响应。 关键词 低温胁迫;水稻;甲基化敏感扩增多态性;DNA 甲基化

中图分类号 S511 文献标识码 A 文章编号 0517-6611(2017)04-0135-03

MSAP Analysis of Genomic DNA Methylation in Oryza sativa under Low Temperature Stress

WANG Ya-nan, FAN Si-jing (Anhui Jinpeiyin Technology Co., Ltd., Hefei, Anhui 230088)

Abstract [Objective]Effects of low temperature stress on genomic DNA methylation levels and patterns in *Oryza sativa* were studied. [Method] In this study, rice seedlings were used as materials to carry out MSAP analysis by using 66 different primer combinations. The experiment included a control group and four treatment groups. $T_1 - T_3$ were under 4 °C for 1 – 3 days, T_4 was the two-day's recovery group after low temperature stress. [Result] The methylation levels of CK, T_1 , T_2 , T_3 treatment were 37.19%, 33.79%, 33.67% and 32.67%, respectively. Further analysis showed that the level of global DNA methylation in *O. sativa* were decreased under low temperature stress, while normal temperature recovery treatment could alleviate the trend. [Conclusion]Methylation in some loci of rice genome may participate in response of rice to low temperature stress.

Key words Low temperature stress; Oryza sativa; MSAP; DNA methylation

低温引起的冷应力是较常见的环境压力之一,它是影响 植物生长和发育的一个主要因素。按照低温程度和植物受 害情况可分为冷害(零上低温对植物的伤害)和冻害(零下 低温对植物的伤害)两大类^[1]。为了应对环境变化,将植物 事先暴露于低温环境中,使其获得对寒冷的耐受性,这涉及 细胞代谢、组织结构的重塑、基因表达的重新编程。

DNA 甲基化是生物界中普遍存在的 DNA 共价修饰方 式。大量研究表明,DNA 甲基化直接参与植物对干旱、重金 属、低温等逆境胁迫的响应,调控基因的表达,从而导致植物 表型发生变化^[2-4]。DNA 甲基化已被假设为植物表型临时 变化的潜在机制之一。目前,研究植物基因组中的 DNA 甲 基化方法主要有甲基化敏感扩增多态性(MSAP)技术、亚硫 酸盐测序法、焦磷酸测序法和高分辨率熔解曲线法。甲基化 敏感扩增多态性技术是采用限制性内切酶 *Hpa* II 和 *Msp* I 识 别 DNA 序列中的5′ – CCGG 位点进行酶切,然后对酶切产物 进行接头的连接,再对 PCR 反应进行后续扩增片段多态性 分析。由于其操作简单、重复性高,已广泛应用于多种植物 DNA 甲基化的研究^[5-9]。

水稻是喜温作物,在其整个生长历程中,尤其是幼苗阶段,由于季节原因,经常遭遇低温冷害。低温胁迫给水稻生产造成巨大的损失,导致稻种萌发率低,幼苗生长迟缓,甚至死亡。该研究以中籼两系杂交稻品种两优 9526 幼苗为材料,利用甲基化敏感扩增多态性技术研究低温胁迫及恢复过程中两优 9526 幼苗 DNA 甲基化水平以及模式的变化,为深入了解水稻对低温胁迫的响应机制提供理论参考。

1 材料与方法

1.1 材料与处理方法 试验以中籼两系杂交稻品种两优 9526为材料。筛选饱满的种子进行发芽,然后盆栽,待水稻 出苗后,进行正常培养,光照 100 μmol/(m²·s),光周期 14 h/10 h(L/D),温度(28 ±2)℃。待幼苗第4片叶长出,倒 三叶完全伸展时,取生长一致的幼苗进行后续试验。以正常 处理为对照(CK);4℃低温处理1d为T₁处理;4℃低温连 续处理2d为T₂处理;4℃低温连续处理3d为T₃处理;4℃ 低温连续处理3d后,恢复2d为T₄处理,每个处理设3次重 复,取叶片用液氮冷冻,-80℃冰箱保存备用。

1.2 基因组 DNA 的提取 水稻叶片总 DNA 提取参照改良 CTAB 法^[9], DNA 纯度采用 0.8% 琼脂糖凝胶电泳检测, 同时 利用 NanoDrop ND - 2000 超微量分光光度计测定 230、260 nm 处的 OD 值,将纯度较高的 DNA 放置在冰箱中保存, 以备 后续的酶切与 PCR 扩增试验。

1.3 DNA 甲基化多态性分析 采用双酶切组合 EcoR I/ Msp I和 EcoR I/Hpa II对 DNA 进行酶切,具体试验操作参照 Xiong 等^[10]的方法。酶切后的 DNA 采用接头进行连接,然 后进行 PCR 扩增反应,连接的接头与 PCR 扩增引物在表 1 中列出。扩增产物经变性后采用 6% 聚丙烯酰胺凝胶进行电 泳,电泳结束后的显影参照 Sanguinetti 法^[11]采用银染显色。

2 结果与分析

2.1 低温胁迫对两优 9526 幼苗 DNA 甲基化水平的影响 从图 1 可看出,经酶切、PCR 反应扩增后,经聚丙烯酰胺 凝胶电泳分析,共检测出 3 个甲基化类型,I型为无甲基化或 单链内甲基化,电泳结果为都有带;II型为单链外甲基化,*Hpa* II酶切位点有带,*Msp* I酶切位点无带;III型为双链内甲基化, *Hpa* II酶切位点无带,*Msp* I酶切位点有带。

基金项目 安徽省科技攻关项目(1501031111)。

作者简介 王亚男(1983—),女,安徽青阳人,农艺师,硕士,从事作物 遗传育种研究。

收稿日期 2016-12-14

表1	MSAP	所用引	物和接头序列
		1111111	

Table 1 Sequences of the primers and adaptors used for MSAP

	序列 Sequence					
Adaptor and primer	<i>Eco</i> R I (5'-3') (E)	HpaII/MspI(5'-3')(H-M)				
接头 Adaptor	CTCGTAGACTGCGTACC	GATCATGAGTCCTGCT				
	AATTGGTACGCAGTC	CGAGCAGGACTCATGA				
预扩增引物 Pre-amplification primer	GACTGCGTACCAATTCA (E0)	ATCATGAGTCCTGCTCGGT (H0)				
选择性扩增引物 Selective-amplification primer	GACTGCGTACCAATTCAAC(E1)	ATCATGAGTCCTGCTCGGTCG(H1)				
	GACTGCGTACCAATTCAAG(E2)	ATCATGAGTCCTGCTCGGTGC(H2)				
	GACTGCGTACCAATTCACT(E3)	ATCATGAGTCCTGCTCGGTGA(H3)				
	GACTGCGTACCAATTCATC(E4)	ATCATGAGTCCTGCTCGGTAG(H4)				
	GACTGCGTACCAATTCACC(E5)	ATCATGAGTCCTGCTCGGTCT(H5)				
	GACTGCGTACCAATTCACG(E6)	ATCATGAGTCCTGCTCGGTTC(H6)				
	GACTGCGTACCAATTCAGG(E7)					
	GACTGCGTACCAATTCAGA(E8)					
	GACTGCGTACCAATTCAGT(E9)					
	GACTGCGTACCAATTCAGC(E10)					
	GACTGCGTACCAATTCACA(E11)					

为了检测水稻幼苗在响应低温胁迫及恢复过程中的 DNA 甲基化水平变化,利用 66 个不同的引物组合(表1)对 来自对照(CK)、低温胁迫 1 d(T₁)、低温胁迫 2 d(T₂)、低温 胁迫 3 d(T₃)和恢复 2 d(T₄)处理组的水稻幼苗 DNA 样品进 行 MSAP 分析。CK、T₁、T₂、T₃、T₄ 处理组 DNA 甲基化图谱中 总扩增位点数分别为 1 835、1 808、1 806、1 812 和 1 830(表

2)。从低温胁迫处理前后甲基化率 [(Ⅱ + Ⅲ)/(Ι + Ⅱ + Ⅲ)×100%]和全甲基化率[Ⅲ/(Ι+Ⅱ + Ⅲ)×100%]的变化来看,低温处理导致水稻幼苗 DNA 总甲基化水平、全甲基化水平降低;而恢复处理组(T₄)减缓了这种趋势,DNA 总甲基化、全甲基化水平均有所回升。

注:选扩引物为 H2/E5 和 H3/E6; M. EcoR J/Msp I; H. EcoR J/Hpa II

Note: The selective-amplification primers were H2/E5 and H3/E6; M. EcoR [/Msp]; H. EcoR [/Hpa]]

图1 DNA 甲基化模式分析结果

Fig. 1 The result of DNA methylation patterns

表 2 低温胁迫处理对两优 9526 幼苗 DNA 甲基化水平的影响

Table 2 Effects of low temperature stress on DNA methylation levels in Liangyou 9526 seedlings

处理 Treatment	Ι	П	Ш	总条带数 Total amplified bands	甲基化条带数 Total methylated bands	甲基化条带比例 Total methylated bands ratio//%	全甲基化条带比例 Full methylated bands ratio//%
CK	1 153	240	442	1 835	682	37.19	24.71
T ₁	1 197	196	415	1 808	611	33.79	22.95
T ₂	1 198	203	405	1 806	608	33.67	22.43
T ₃	1 220	198	394	1 812	592	32.67	21.74
T_4	1 183	222	425	1 830	647	35.36	23.74

2.2 低温胁迫过程中两优 9526 幼苗 DNA 甲基化模式的变

化 经低温处理后,水稻幼苗 DNA 甲基化的变化主要分为3 类,共包括 13 种带型,其中 A 类带型(A1~A3)是表示单态

性的甲基化位点,即对照与处理间的甲基化位点一致、无变化;B类带型(B1~B5)是指发生去甲基化的位点,与对照相比,经低温处理后,原先甲基化的位点发生了去甲基化,甲基

化位点数有所减少;C类带型(C1~C5)是指未甲基化或单链 外甲基化的位点发生了超甲基化,即与对照相比,原先甲基 化或单链外甲基化的位点经低温处理后发生了超甲基化,甲 基化的总位点数有所增加。从表3可以看出,与对照相比, 随着低温胁迫时间的增加,水稻幼苗基因组中发生 DNA 甲 基化的位点数逐渐降低,而恢复处理改变了这种趋势。由此 可见,低温胁迫主要诱导植株发生较高比例的去甲基化。进 一步分析低温造成的 DNA 甲基化多态性位点发现,产生的 超甲基化(C3、C4、C5型)带型是主要的多态性带型(图2), 分别占总甲基化位点数的7.33%、7.69%、7.40%。

	表 3 低温胁迫处理对两优 9526 幼苗 DNA 甲基化模式的影响
Table 3	Effects of low temperature stress on DNA methylation pattern in Liangyou 9526 seedlings

条带类型	MSAP 凝胶上条带类型 Band pattern displayed in MSAP gel				不同类型甲基化位点数量 Total of different methylation types			
Band pattern	СК		Т		CK –	СК –	СК –	CK –
-	Н	М	Н	М	- T ₁	T_2	T_3	T_4
A1	+	+	+	+	1 100	1 132	1 142	1 139
12	-	+	-	+	368	368	345	352
13	+	-	+	-	180	179	176	168
单态性甲基化位点总数 Total of monomorphic loci					1 648	1 679	1 663	1 659
31	-	+	+	+	40	31	50	27
32	+	-	+	+	33	23	22	12
33	-	-	+	+	24	12	6	5
34	-	-	+	-	3	17	25	50
35	-	-	-	+	0	5	10	35
去甲基化位点总数 Total of demetheylation loci					100	88	113	129
21	+	+	+	-	11	9	4	2
22	+	+	-	+	19	13	4	6
23	+	+	-	-	21	9	3	4
24	+	-	-	-	9	21	9	26
25	-	+	-	-	20	17	33	34
超甲基化位点总数 Total of hypermethylation loci					80	69	53	74
多态性甲基化位点总数 Total of polymorphic loci					180	157	166	203

注:"+"表示电泳图谱中有条带,"-"表示电泳图谱中条带的缺失

Note:" + "and " - " indicated the presence and absence of the band in MSAP gel, respectively

注:H和M表示对照,H'和M'表示低温胁迫处理

Note: H and M indicated the control, the H' and M' referred to the low temperature treatment

图 2 低温胁迫处理对两优 9526 幼苗 DNA 甲基化模式变化的影响

Fig. 2 Effect of low temperature stress on variation of DNA methylation pattern in Liangyou 9526 seedlings

3 讨论

DNA 甲基化是植物正常生长发育所必需的,甲基化水 平不足或过高,都会导致植物生长发育不正常和形态结构异 常^[12]。研究表明,非生物胁迫(热胁迫、重金属胁迫、盐胁迫 等)对 DNA 的甲基化水平会造成影响^[13-15]。Kovarik 等^[15]的研究表明,盐和渗透胁迫可诱导烟草悬浮细胞的异染色质区发生超甲基化,而恢复正常条件后,发生超甲基化的位点又会去甲基化,可见,基因组的甲基化、超甲基化可能是植物适应非生物胁迫机制的内在反应。该试验中,在低温处理后,利用MSAP分析方法检测发生甲基化和超甲基化的位点,说明 DNA 甲基化反应可能参与了水稻对低温胁迫的响应。

参考文献

- CHINNUSAMY V,ZHU J,ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in plant science, 2007,12(10):444-451.
- [2] 黄韫字,张海军,邢燕霞,等. NaCl 胁迫对黄瓜种子萌发的影响及 DNA 甲基化的 MSAP 分析[J]. 中国农业科学,2013,46(8):1646-1656.
- [3] 王鹤潼,何蕾,宋杰,等. 改进 MSAP PCR 技术应用于 Cd 胁迫下拟南 芥 DNA 甲基化分析[J]. 农业环境科学学报,2015,34(8):1618-1624.
- [4] 杨震,彭选明,张逸妍,等. 植物 DNA 甲基化及胁迫诱导的变异[J]. 生物工程学报,2016,32(12):1642-1653.
- [5] 何克勤,程晓紊,胡能兵,等. 甜叶菊种质离体保存后的 DNA 甲基化研究[J]. 中药材,2016(10):2190-2193.
- [6] 赵云雷,叶武威,王俊娟,等. DNA 甲基化与植物抗逆性研究进展[J]. 西北植物学报,2009,29(7):1479-1489.
- [7] 潘雅姣,傅彬英,王迪,等.水稻干旱胁迫诱导 DNA 甲基化时空变化特征分析[J].中国农业科学,2009,42(9):3009-3018.
- [8] 陆许可,王德龙,阴祖军,等. NaCl 和 Na₂CO₃ 对不同棉花基因组的 DNA 甲基化影响[J]. 中国农业科学,2014,47(16):3132-3142.
- [9] 朱红菊,刘文革,赵胜杰,等. NaCl 胁迫下二倍体和同源四倍体西瓜幼苗 DNA 甲基化差异分析[J].中国农业科学,2014,47(20):4045-4055.
- [10] XIONG L Z,XU C G, SAGHAIMAROOF M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Mol Gen Genet, 1999, 261 (3):439-446.

对古建筑的保护和利用、改造等方面提出具体的规划及改造 原则,要维持传统村落的整体面貌。此外,传统村落普遍存 在旅游项目过于单调的情况,村落之间没有明显差异。很多 人在传统村落只是看古建筑、逛老街,因此在村落中逗留的 平均时间比较短。韩国的传统村落非常重视体验活动,体验 活动越独特,越具有创意,越能够反映村落特色,游客的兴趣 也越浓,在村落中逗留的时间也会延长,甚至选择住宿,村民 的经济收入也将随之增加。因此,要根据村落的乡土景观资 源开发独具特色的丰富体验活动,并且要考虑季节性,在不 同季节提供不同的体验活动,保持村落的活力。另外,借用 网络平台建设村落官方网站,及时宣传不同季节举办的庆典 等活动。除此之外,国内的村落缺少有组织的观赏与体验系 统,应把乡土景观和体验活动有机的结合在一起,恰到好处 地安排体验场所,使游客在乡土景观的体验中获取更多的历 史文化知识。

综上所述,对浙江省传统村落的可持续发展提出4个方面的建议(图9):①充分挖掘乡土景观资源,凸显乡村特色。 ②充分利用乡土景观资源,开发既丰富又具有明显村落特色的体验活动。体验活动包括乡土文化体验、历史体验、自然体验等。③将乡土景观资源和体验活动有效结合在一起,组织一系列丰富多彩的村落整体体验活动。④目前未开发为旅游项目的传统村落有必要继续保持原来的风貌,保持村民原有的生活环境。

(上接第137页)

- [11] SANGUINETTI C J, DIAS NETO E, SIMPSON A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques, 1994, 17(5):914-921.
- [12] 李际红,邢世岩,王聪聪,等.银杏基因组 DNA 甲基化修饰位点的 MSAP 分析[J]. 园艺学报,2011,38(8):1429-1436.
- [13] PAREEK, A, SOPORY S K, BOHNERT H J, et al. Abiotic Stress Adapta-

图9 乡土景观资源利用模式

Fig. 9 Using pattern of village landscape organization chart

参考文献

- [1] 王东芳. 正在消失的传统村落[J/OL]. 百科知识,2012(24):47-49
 (2012-12-20)[2016-10-15]. http://www. xzbu. com/7/view 3796891. htm.
- [2] 周乾松. 我国传统村落保护的现状问题与对策思考[N]. 中国建设报, 2013-01-29(3).
- [3] 胡燕,陈晟,曹玮,等.传统村落的概念和文化内涵[J].城市发展研究, 2014,21(1):10-13.
- [4] KANG D J. A study on the conservation methodology for traditional villages in Korea[J]. Korean Institute of landscape architecture, 2004, 22(3):41 – 63.
- [5] JEONG S Y, YU I H. The perceptions and value attitudes toward becoming tourist destination of traditional folk village [J]. Korea planners association,2009,44(1):245-258.
- [6] 岳邦瑞,郎小龙,张婷婷,等. 我国乡土景观研究的发展历程、学科领域 及其评述[J]. 中国生态农业学报,2012,20(12):1563-1570.
- [7] 李树华,杨秀娟,董建军. 乡土景观设计手法:向乡村学习的城市环境 营造[M]. 北京:中国林业出版社,2008.

tion in Plants: Physiological, Molecular and Genomic Foundation [M]. Berlin:Springer Press,2010;231-241.

- [14] 文欢,彭成,饶朝龙,等. 花叶型与艾叶型乌头叶片基因组 DNA 甲基化 修饰的 MSAP 分析[J]. 中国中药杂志,2016,41(19):3602-3608.
- [15] KOVARIK A, KOUKALOVÁ B, BEZDEK M, et al. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress [J]. Theor Appl Genet, 1997, 95(1):301 – 306.