# 液相色谱 – 同位素质谱法鉴定蜂蜜掺假

陈亚成<sup>1,2</sup>,张业鹏<sup>1,2</sup>,范志勇<sup>2,3</sup> (1. 湖北工业大学机械工程学院,湖北武汉 430068;2. 湖北省现代制造质量工程重点实验室,湖北 武汉 430068;3. 湖北省食品质量安全监督检验研究院,湖北武汉 430068)

摘要 [目的] 探讨液相色谱 - 同位素质谱法(LC - IRMS) 技术在蜂蜜掺假鉴定中的应用效果。[方法] 采用 LC - IRMS 法检测随机抽样的 62 个蜂蜜样品,对蜂蜜中果糖(Fru)、葡萄糖(Glu)、二糖和三糖  $\delta^{13}$ C 值进行测定。[结果] 由于真实蜂蜜中果糖、葡萄糖、二糖和三糖 的  $\delta^{13}$ C 的最大值与最小值的差值小于 2.1‰,果糖、葡萄糖的  $\delta^{13}$ C 差值( $\delta^{13}$ C<sub>Fu</sub> -  $\delta^{13}$ C<sub>Gu</sub>)为 - 1‰ ~ 1‰,且不得含有寡糖,所以该次检测样品中有 48.38% 的蜂蜜不合格,掺假掺杂以添加 C - 3 植物源转化产物和淀粉糖浆为主,应加强对这类掺假的监控管理。[结论] LC - IRMS实现了蜂蜜中各种糖组分如果糖、葡萄糖、二糖和三糖等  $\delta^{13}$ C 的分离与分析,可进行添加了 C - 3 糖浆的掺假鉴定,大大提高了蜂蜜掺假的检测能力。

关键词 液相色谱 - 同位素质谱;蜂蜜;掺假; 8<sup>13</sup>C值 中图分类号 S896.1; TS207.3 文献标识码 A 文章编号 0517-6611(2017)07-0009-02

### Identification of Honey Adulteration by Liquid Chromatography-isotope Mass Spectrometry (LC-IRMS)

**CHEN Ya-wei<sup>1,2</sup>**, **ZHANG Ye-peng<sup>1,2</sup>**, **FAN Zhi-yong<sup>2,3</sup>** (1. School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei 430068;2. Key Lab of Modern Manufacture Quality Engineering, Wuhan, Hubei 430068;3. Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430068)

Abstract [Objective] The aim was to explore application of LC-IRMS technique in identification of honey adulteration. [Method] We detected 62 honey samples by LC-IRMS, and determined  $\delta^{13}$ C value of fructose, glucose, disaccharide and trisaccharide of honey. [Result] The difference of maximum and minimum  $\delta^{13}$ C of fructose, glucose, disaccharide and trisaccharide of true honey was less than 2.1‰, and  $\delta^{13}C_{Fm}$ - $\delta^{13}C_{Glu}$  was from -1% to 1‰, and there was no oligosaccharides, so 48.38% of samples was no qualified. The adulteration was mainly C-3 plant products and starch syrup, so the monitoring management of adulteration should be strengthened. [Conclusion] LC-IRMS realizes the  $\delta^{13}$ C isolation and analysis of fructose, glucose, disaccharide and trisaccharide of honey, so it can be used in the adulteration identification of C-3 syrup and can improve the detection capability of honey adulteration.

Key words Liquid chromatography-isotope mass spectrometry (LC-IRMS); Honey; Adulteration;  $\delta^{13}$ C value

蜂蜜是一种高品质的天然甜味剂,是由蜜蜂从花蜜或蜜 露中生产出来的。蜂蜜主要含葡萄糖、果糖和蔗糖,还含有 丰富的蛋白质、氨基酸、有机酸及多种维生素和矿物质等,特 别含有多种活性酶类,如淀粉酶、蔗糖转化酶、过氧化氢酶和 脂酶等。因此,蜂蜜是一种富有营养价值的天然食品<sup>[1]</sup>。近 年来随着人民生活品质的提高,蜂蜜在国内外需求量不断增 大。据统计,我国蜂蜜每年的销量远大于产量,蜂蜜掺假掺 杂行为确实存在,尤以内销蜂蜜更为严重,且呈不断加重趋 势。蜂蜜真实性鉴别成为当前急需解决的技术问题。

目前,测定蜂蜜掺假的主要方法有液相色谱示差折光检 测法、薄层色谱法(TLC法)、糖类指纹图谱法、元素分析同位 素比值质谱法和离子色谱法等<sup>[2]</sup>。对于目前市面上的掺假 手段,如在蜂蜜中加入C-3或C-4植物糖浆,上述方法总 有些局限性,耗时长、干扰多、灵敏度不高。利用稳定同位素 技术鉴定蜂蜜掺假问题越来越得到商检质检等检测机构的 关注。随着稳定同位素比质谱技术的发展,以及连续流在线 装置的集成化、多功能化和多样化,稳定同位素分析结果成 为快速评鉴蜂蜜是否掺假的有力证据。液相色谱 - 同位素 质谱法(LC-IRMS)采用液相色谱分离蜂蜜中的糖,测定蜂 蜜中各种糖组分的δ<sup>13</sup>C值,测定结果与纯正蜂蜜中各糖组分 的δ<sup>13</sup>C值做对比,用来鉴别蜂蜜的真假,提高了试验效率和 灵敏度。笔者采用 LC - IRMS 对 62 个蜂蜜样品进行了检 测,旨在为蜂蜜掺假监控与管理提供参考。

作者简介 陈亚威(1991—),男,湖北嘉鱼人,硕士研究生,研究方向: 食品质量控制与检测。
收稿日期 2016-12-23

### 1 材料与方法

# 1.1 材料

1.1.1 仪器。DELTA V Advantage 同位素质谱仪(Thermo Fisher 公司); UltiMate3000 高效液相色谱仪(Thermo Fisher 公司)与 Isolink 接口; Phenomenex Rezek RCM(Ca<sup>2+</sup>)色谱柱(300 mm × 8 mm, Thermo Fisher 公司); 0.45 μm 水相滤膜。
1.1.2 试剂。4% Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> 溶液和 4% H<sub>3</sub>PO<sub>4</sub> 溶液; 超纯水(Millipore 公司); He(高纯 99.999%, 载气); CO<sub>2</sub>(工作标准 参考气); 蔗糖标准品; δ<sup>13</sup>C 标准品(Caffeine)水溶液。

1.1.3 样品。蜂蜜样品:来自日常抽检样品(共62个样)。

**1.2 样品处理**称取 0.5 g 蜂蜜样品,用超纯水溶解,定容至 50 mL,过 0.45 μm 水相滤膜到进样瓶中供液相色谱 - 同位素质谱仪测定。同一蜂蜜样品分别配制成 1、10 g/L 蜂蜜稀释液,用于蜂蜜中果糖/葡萄糖 δ<sup>13</sup>C 和二糖/三糖 δ<sup>13</sup>C 的测定。

# 1.3 色谱和质谱条件

**1.3.1** 色谱条件。色谱柱为 Phenomenex Rezek RCM(Ca<sup>2+</sup>), 洗脱剂为100% 超纯水,流速为30 μL/min,样品溶液进样体 积为10 μL,柱箱温度为70 ℃。Acid Pump(H<sub>3</sub>PO<sub>4</sub>)和Ox. – Pump(Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>)流速均控制在40 μL/min。

1.3.2 质谱条件。氧化炉温度 99.9℃;离子源:电子轰击 离子源;轰击电压 120.8 eV;扫描方式:正离子扫描;辅助气 压力 0.4 MPa;离子源电压 2.97 kV;真空度 2.0×10<sup>-4</sup> Pa。 进样品测定时,每个样品的分析起始阶段和尾气阶段通人 CO<sub>2</sub> 参考气进行系统稳定性评价。如果 m/z 44 信号在 1 ~ 2 V或更低,则 CO<sub>2</sub> 的本底测试通过<sup>[3]</sup>。如果 m/z 32 信号在 8~12 V,则 O,的本底测试通过。

%

### 2 结果与分析

2.1 液相色谱 – 同位素质谱法分析蜂蜜样品中各类糖组分的  $\delta^{13}$ C值 如果蜂蜜是单一花种的纯正蜂蜜,其中含有果糖、葡萄糖、二糖和三糖的碳同位素值应十分接近。根据 Elflein 等<sup>[4]</sup>和 Simsek 等<sup>[5]</sup>的研究报道,真实纯蜂蜜样品各类糖 组分的  $\delta^{13}$ C值在 – 28.2‰ ~ – 22.5‰,葡糖糖和果糖的  $\delta^{13}$ C 值的差值为 ± 1‰,果糖、葡萄糖、二糖和三糖的  $\delta^{13}$ C 的最大 值与最小值的差值小于 2.1‰,果糖葡萄糖的  $\delta^{13}$ C 差值 ( $\delta^{13}$ C<sub>Fm</sub> –  $\delta^{13}$ C<sub>Gu</sub>)为 – 1‰ ~ 1‰。

由表1可知,果糖葡萄糖的 $\delta^{13}C 
ext{ } 
ext{ }$ 

蜜。而蜂蜜中各种糖组分最大值与最小值的差值( $\delta^{13}C_{Max}$  -  $\delta^{13}C_{Min}$ ) < 2.1% 的有 12、14、17、44、56 等 22 个样品,也属于 掺假样品,其中差值最大的达 7.99% ,在这些样品中,还有 15、17、18、44 这4 个样品检测出寡糖,而真实蜂蜜中是不得 检出寡糖的<sup>[6]</sup>,所以这些样品都存在掺假掺杂。结果显示,检测样品中共有 30 个掺假样品,占 62 份蜂蜜样品总数的 48.38%,并且凡是样品蜂蜜中果糖、葡萄糖的  $\delta^{13}C$ 差值 ( $\delta^{13}C_{Fru} - \delta^{13}C_{Glu}$ )不合格的,各种糖组分的差值( $\delta^{13}C_{Max} - \delta^{13}C_{Min}$ )也不合格;但蜂蜜中各种糖组分的差值( $\delta^{13}C_{Max} - \delta^{13}C_{Min}$ )可能合格,也可能不合格<sup>[7]</sup>。说明目前的掺假手段 大多是针对二糖、三糖甚至寡糖的掺假,也就是直接加入了 C-3 植物源糖浆来掺假。

表1 LC – IRMS 测定不同蜂蜜样品的定碳同位素比值

| Table 1 The carbon isotope ratio of different sa | amples of honey determined by LC-IRMS |
|--------------------------------------------------|---------------------------------------|
|--------------------------------------------------|---------------------------------------|

| 样品<br>Samples | $\delta^{^{13}}C_{_{Fru}}$ | $\delta^{^{13}}C_{_{Glu}}$ | $\delta^{^{13}}C_{_D}$ | $\delta^{^{13}}C_{_T}$ | $\delta^{^{13}}C_{_{F-G}}$ | $\delta^{13} C_{Max-Min}$ | 样品<br>Samples | $\delta^{^{13}}C_{_{Fru}}$ | $\delta^{^{13}}C_{_{Glu}}$ | $\delta^{^{13}}C_{_D}$ | $\delta^{^{13}}C_{_T}$ | $\delta^{^{13}}C_{_{F-G}}$ | $\delta^{13}C_{Max-Min}$ |
|---------------|----------------------------|----------------------------|------------------------|------------------------|----------------------------|---------------------------|---------------|----------------------------|----------------------------|------------------------|------------------------|----------------------------|--------------------------|
| 1             | -27.44                     | -28.08                     | - 29.91                | -28.95                 | 0.60                       | 2.47                      | 32            | -28.35                     | -28.59                     | - 30. 16               | _                      | 0.20                       | 1.81                     |
| 2             | -26.24                     | -26.27                     | -27.52                 | -26.15                 | -0.10                      | 1.69                      | 33            | -28.72                     | -28.62                     | -31.12                 |                        | -0.10                      | 2.51                     |
| 3             | -27.18                     | -28.73                     | -29.95                 | - 30. 11               | 1.50                       | 2.37                      | 34            | -28.91                     | -28.65                     | - 30. 57               | —                      | -0.30                      | 1.92                     |
| 4             | -27.43                     | -27.79                     | -29.92                 | -29.12                 | 0.40                       | 2.50                      | 35            | -26.50                     | -26.34                     | -27.37                 | -27.87                 | -0.20                      | 1.53                     |
| 5             | -23.21                     | -28.79                     | -27.74                 | _                      | 5.60                       | 5.58                      | 36            | -28.58                     | -28.31                     | -26.74                 | -22.22                 | -0.30                      | 6.35                     |
| 6             | -25.96                     | -28.75                     | -29.32                 | _                      | 2.80                       | 3.36                      | 37            | -25.59                     | -25.48                     | -27.53                 | -28.64                 | -0.10                      | 3.16                     |
| 7             | -26.96                     | -29.37                     | -28.94                 | _                      | 2.40                       | 2.41                      | 38            | -27.90                     | -28.06                     | -29.89                 | _                      | 0.20                       | 1.99                     |
| 8             | -26.35                     | -28.83                     | -29.75                 | _                      | 2.50                       | 3.40                      | 39            | -26.03                     | -25.80                     | -26.25                 | -24.56                 | -0.20                      | 1.69                     |
| 9             | -26.80                     | -29.58                     | - 30.03                | _                      | 2.80                       | 3.32                      | 40            | -24.78                     | -24.41                     | -26.24                 | -24.81                 | -0.40                      | 1.83                     |
| 10            | -29.97                     | -28.26                     | -29.47                 | -27.82                 | -1.70                      | 2.15                      | 41            | -24.85                     | -24.53                     | -26.11                 | -25.25                 | -0.30                      | 1.58                     |
| 11            | -26.37                     | -29.03                     | -28.47                 | _                      | 2.70                       | 2.66                      | 42            | -24.71                     | -24.31                     | -26.33                 | -24.65                 | -0.40                      | 2.07                     |
| 12            | -26.30                     | -26.38                     | - 30.25                | -26.53                 | 0.10                       | 3.95                      | 43            | -28.26                     | -27.49                     | -26.79                 |                        | -0.80                      | 1.47                     |
| 13            | -27.83                     | -28.07                     | -27.48                 | -26.02                 | 0.20                       | 2.05                      | 44            | -26.32                     | -26.42                     | -28.28                 | -28.86                 | 0.10                       | 2.54                     |
| 14            | -27.81                     | -27.68                     | -28.50                 | -26.15                 | -0.10                      | 2.35                      | 45            | -25.79                     | -25.46                     | -26.93                 |                        | -0.30                      | 1.46                     |
| 15            | -26.64                     | -26.50                     | -27.76                 | -25.93                 | -0.10                      | 1.83                      | 46            | -29.45                     | -28.48                     | -21.46                 | _                      | -1.00                      | 7.99                     |
| 16            | -29.10                     | -29.27                     | -29.87                 | _                      | 0.20                       | 0.77                      | 47            | -25.55                     | -28.93                     | -27.96                 | _                      | 3.40                       | 3.78                     |
| 17            | -27.28                     | -27.81                     | -28.49                 | -25.74                 | 0.50                       | 2.76                      | 48            | -25.53                     | -29.04                     | 28.98                  | _                      | 3.50                       | 3.51                     |
| 18            | -28.88                     | -28.74                     | - 30.31                | -27.99                 | -0.10                      | 2.33                      | 49            | -27.18                     | -27.29                     | -28.73                 | -27.02                 | 0.10                       | 1.72                     |
| 19            | -25.60                     | -25.90                     | -27.42                 | _                      | 0.30                       | 1.82                      | 50            | -28.71                     | -28.48                     | - 30.09                | _                      | -0.20                      | 1.61                     |
| 20            | -26.52                     | -25.97                     | -31.17                 | -28.44                 | -0.60                      | 5.21                      | 51            | -28.81                     | -29.16                     | -30.45                 | -28.23                 | 0.30                       | 2.22                     |
| 21            | -29.03                     | -28.82                     | - 30.62                | _                      | -0.20                      | 1.80                      | 52            | -28.89                     | -28.57                     | - 30.07                | _                      | -0.30                      | 1.50                     |
| 22            | -28.57                     | -28.82                     | -29.96                 | —                      | 0.30                       | 1.39                      | 53            | -28.08                     | -28.38                     | -29.50                 | - 30.03                | 0.30                       | 1.95                     |
| 23            | -29.06                     | -28.98                     | - 30.82                | _                      | -0.10                      | 2.04                      | 54            | -28.77                     | -28.34                     | - 30.04                | -28.64                 | -0.40                      | 1.71                     |
| 24            | -28.72                     | -28.78                     | - 30.04                | _                      | 0.10                       | 1.32                      | 55            | -29.01                     | -28.74                     | - 30. 01               | -28.90                 | -0.30                      | 1.27                     |
| 25            | -28.63                     | -28.63                     | - 30.09                | _                      | 0.30                       | 1.46                      | 56            | -24.99                     | -24.61                     | -29.52                 | -25.97                 | -0.40                      | 3.55                     |
| 26            | -29.25                     | -28.90                     | -31.13                 | _                      | -0.40                      | 2.23                      | 57            | -27.60                     | -27.48                     | -28.49                 | -24.86                 | -0.10                      | 3.63                     |
| 27            | -28.70                     | -28.97                     | - 30.07                | _                      | 0.30                       | 1.37                      | 58            | -28.58                     | -28.22                     | -29.87                 | _                      | -0.40                      | 1.65                     |
| 28            | -28.54                     | -28.80                     | - 30.26                | _                      | 0.30                       | 1.71                      | 59            | -27.84                     | -27.53                     | -28.79                 | -25.98                 | -0.30                      | 2.81                     |
| 29            | -28.33                     | -28.39                     | - 30.98                | _                      | 0.10                       | 2.65                      | 60            | -27.16                     | -26.88                     | -28.08                 | -24.58                 | -0.30                      | 3.50                     |
| 30            | -28.50                     | -28.22                     | - 30.71                | _                      | -0.30                      | 2.49                      | 61            | -26.98                     | -26.67                     | -27.42                 | -24.25                 | -0.30                      | 3.17                     |
| 31            | -28.98                     | -28.82                     | - 30.93                |                        | -0.20                      | 2.11                      | 62            | -26.31                     | -26.40                     | -26.51                 | -24.13                 | 0.10                       | 2.37                     |

注"一"为未检出

Note:"-"indicated no detection

**2.2 LC – IRMS 法在蜂蜜掺假中的检测应用**图1为使用 LC – IRMS 方法测定蜂蜜中各种糖组分的 δ<sup>13</sup>C 的离子流强 度 – 时间图谱。蜂蜜试样中的各种糖组分经过 HPLC 在线 分离和LC IsoLink 湿化学氧化,转化为CO<sub>2</sub>,分别进行同位素 比质谱分析,在谱图上均显示为尖峰。谱图上显示纯正蜂蜜 (下转第95页) on, Maryland: Wildlife International Ltd, 2001.

- [27] LI M H. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates [J]. Environmental toxicology, 2009, 24 (1):95-101.
- [28] SAKURAI T, SERIZAWA S, ISOBE T, et al. Spatial, phase, and temporal distributions of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in Tokyo Bay, Japan [J]. Environmental science & technology, 2010,44(11);4110-4115.
- [29] GULKOWSKA A, JIANG Q T, SO M K, et al. Persistent perfluotinated acids in seafood collected from two cities of China [J]. Environ Sci Technol,2006,40(12):3736 – 3741.
- [30] LAU C, THIBODEAUX J R, HANSON R G, et al. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse[J]. Toxicological sciences an official journal of the society of toxicology, 2006, 90 (2): 510-518.
- [31] DONG G H, ZHANG Y H, ZHENG L, et al. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6

# (上接第10页)

中三糖在1000 s 附近出峰, 二糖在1100 s 附近出峰, 葡萄糖 在1300 s 附近出峰, 果糖在1700 s 附近出峰。

应用该方法检测来自7个不同企业共计62个抽检样品 (生产日期在2015年12月至2016年6月)中,共有30个样 品不合格,掺假占总数的48.38%;而利用已有的高效液相示 差法分析蜂蜜中还原糖及蔗糖含量,结果显示只有3个样品 不合格,占样品总数的4.84%;利用薄层色谱法(TLC法)测 定蜂蜜中的高果淀粉糖浆,结果显示有16个样品不合格,占 样品总数的25.81%。说明应用LC-IRMS法在蜂蜜中的掺 假检出率远高于原有的方法。且这些企业对检测结果没有 提出申诉异议,说明该方法准确有效。





## Fig.1 The intensity-time chromatogram of pure honey determined by LC-IRMS

2.3 LC-IRMS 法测定精度 在每次检测蜂蜜样品同时测 定蜂蜜平行样品,测定 62 个蜂蜜平行样品各种糖组分的 δ<sup>13</sup>C值,计算标准偏差。由表 2 可知,LC-IRMS 方法测定蜂 蜜中各种糖组分δ<sup>13</sup>C值标准偏差为0.1% ~0.4%。二糖和 三糖标准偏差比果糖、葡萄糖高些,是由于二糖和三糖在蜂 蜜中含量相当低,所以要用 10 g/L 蜂蜜稀释液进行测定,而 果糖、葡萄糖的含量相对高些,所以用1 g/L 蜂蜜稀释液进行 测定,同时温度、湿度、色谱分离效果、系统不稳定等因素也 存在造成偏差增大的可能性<sup>[8]</sup>。对于日常蜂蜜分析,LC-IRMS 法完全可以满足蜂蜜中果糖、葡萄糖、二糖和三糖δ<sup>13</sup>C mice. [J]. Archives of toxicology, 2009, 83(9):805-815.

- [32] OAKES K D, SIBLEY P K, SOLOMON K R, et al. Impact of perfluorooctanoic acid on fathead minnow(*Pimephales promelas*) fatty acyl – coa oxidase activity, circulating steroids, and reproduction in outdoor microcosms[J]. Environmental toxicology & chemistry, 2004, 23 (8): 1912 – 1919.
- [33] 刘冰,于麒麟,金一和,等.全氟辛烷磺酸对大鼠海马神经细胞内钙离 子浓度的影响[J]. 毒理学杂志,2005,19(S3):225-226.
- [34] 姚晓峰,仲来福.全氟辛酸对 HepC2 细胞的遗传毒性及氧化性 DNA 损伤[C]//中国毒理学会.中国毒理学会第四届全国学术会议论文(摘要)集.北京:北京市预防医学研究中心,2005:216-217.
- [35] 胡芹.全氟辛烷磺酸(PFOS)对斑马鱼胚胎发育及成鱼的毒性效应研究[D].华中农业大学,2009.
- [36] NAKAYAMA S, STRYNAR M J, HELFANT L, et al. Perfluorinated compounds in the cape fear drainage basin in North Carolina [J]. Environmental science & technology, 2007, 41(15):5271-5276.

#### 值的测定。

#### 表 2 LC - IRMS 法测定平行样品重现性数据

 Table 2
 Repeatability data of parallel samples determined by LC

| IRMS                       |                | %                          |  |  |  |  |
|----------------------------|----------------|----------------------------|--|--|--|--|
| 指标<br>Index                | 平均值<br>Average | 标准偏差<br>Standard deviation |  |  |  |  |
| $\delta^{13}C_{Fru}$       | -27.43         | 0.11                       |  |  |  |  |
| $\delta^{^{13}}C_{_{Glu}}$ | -27.76         | 0.10                       |  |  |  |  |
| $\delta^{13}C_{_D}$        | -27.98         | 0.25                       |  |  |  |  |
| $\delta^{13}C_T$           | - 24. 87       | 0.42                       |  |  |  |  |

## 3 结论

利用 LC - IRMS 法来检测随机抽样的 62 个蜂蜜样品, 对蜂蜜中果糖、葡萄糖、二糖和三糖 δ<sup>13</sup>C 值进行测定,结果发 现 30 份存在掺假掺杂,占总数的 48.38%。掺假手段大多是 针对 C-3 植物源的葡萄糖、果葡萄糖浆甚至多种物质混合 掺假,更具隐蔽性,同时突出该方法的优越性和准确性。掺 假蜂蜜在市场上大量存在,形式多样,应加强监控和管理。

### 参考文献

- [1] 费晓庆,吴斌,沈崇钰,等. 液相色谱/元素分析 同位素比值质谱联用法 鉴定蜂蜜掺假[J]. 色谱,2011,29(1):15-19.
- [2] 中华人民共和国秦皇岛出入境检验检疫局. 蜂蜜中碳-4 植物糖含量 测定方法稳定碳同位素比率法:GB/T 18932.1—2002[S].北京:中国 标准出版社,2003.
- [3] 丁涛.液相色谱 -同位素质谱联用法在蜂蜜掺假鉴定方面的应用 [C]//第四届华东地区色谱、质谱学术报告会论文集.无锡:江苏省分 析测试协会,2010.
- [4] ELFLEIN L, RAEZKE K P. Improved detection of honey adulteration by measuring differences between <sup>13</sup>C/<sup>12</sup>C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer-isotope ratio mass spectrometry and liquid chromatography-isotope ratio mass spectrometry (δ13C-EA/LC-IRMS)[J]. Apidologie,2008,39(5);574-587.
- [5] SIMSEK A, BILSEL M, GÖREN A C. <sup>13</sup>C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS[J]. Food chemistry, 2012, 130(4):1115-1121.
- [6] PADOVAN G J, DE JONG D, RODRIGUES L P, et al. Detection of adulteration of commercial honey samples by the <sup>13</sup>C/<sup>12</sup>C isotopic ratio[J]. Food chemistry,2003,82(4):633-636.
- [7] 黄文诚. 用不同的方法检测高果糖玉米糖浆掺假的蜂蜜[J]. 中国蜂 业,2009,60(9):51-52.
- [8] 罗东辉,罗海英,冼燕萍,等.同位素质谱联用技术鉴别无蛋白蜂蜜的 真实性[J].现代食品科技,2012,28(7):862-866.