西北地区年平均地表温度时空特征分析

陈笑笑,孙必云,华维*

(成都信息工程大学大气科学学院,气候与环境变化联合实验室,高原大气与环境四川省重点实验室,四川成都 610225)

摘要 利用西北地区 136 个气象台站 1960—2004 年逐月 0 cm 地表温度资料,采用主成分、旋转主成分和小波等分析方法,研究了西北 地区年平均地表温度的时空变化特征。结果表明,近45 年来西北地区年平均地表温度表现为明显的升高趋势,且升温的空间分布较为 复杂,高温区和低温区交错分布,陕西、甘肃、新疆东北部和新疆南部为高温区,青海和新疆北部为低温区。经验正交分解结果表明,西 北地区年平均地表温度第1 特征向量表现了西北全区地温一致偏高或偏低的变化特征,第2 和第3 特征向量分别表现出东西及中部与 东、西部相反的差异。旋转经验正交分解后发现,地表温度存在5 个空间异常区,即西北东部、西北北部、西北中部、新疆南部和新疆中 部,其中西北东部区、西北中部区和新疆中部区表现为高—低—高的过程,西北北部区和新疆南部区则为一致的增加趋势。各异常区年 平均地表温度均存在8~16 年或 16~32 年的长周期,西北北部区还存在4~8 年的短周期。 关键词 地表温度;时空特征;西北地区

中图分类号 S161.2 文献标识码 A 文章编号 0517-6611(2017)23-0182-04

Analysis of Spatial and Temporal Characteristics of Annual mean Surface Temperature in Northwest China

CHEN Xiao-xiao, **SUN Bi-yun**, **HUA Wei**^{*} (School of Atmospheric Sciences, Joint Laboratory of Climate and Environment Change, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, Sichuan 610225) **Abstract** On basis of the monthly surface temperature data collected from 136 observational stations in Northwest China(NWC) during 1960 – 2004, the methods of principal component analysis, rotated principal component analysis and wavelet analysis were used to analyze the spatial and temporal characteristics of annual mean surface temperature in NWC. The results showed that the annual mean surface temperature in NWC in the past 45 years was obviously increasing, and the spatial distribution of the warming was more complicated. High temperature zone and low temperature area staggered distribution, the annual mean surface temperature decreased in Shanxi, Gansu and northeast and south of Xinjiang and increased in Qinghai and north of Xinjiang. The empirical results showed that the first eigenvector showed the consistent high or low of annual mean surface temperature in entire NWC, and the second eigenvectors showed the annual mean surface temperature in eastern NWC are opposite with western NWC, vice versa; the third eigenvectors showed the annual mean surface temperature abnormal area could be divided into fifth sub regions; eastern NWC, northern NWC, mid NWC, southern Xinjiang and mid Xinjiang. The eastern NWC, and mid Xinjiang showed high-low-high process, northern NWC and southern Xinjiang were the same increase trend. All the sub regions exist 8 ~ 16 years or 16 ~ 32 years periodic oscillations, only the northern NWC exist 4 ~ 8 years periodic oscillation.

Key words Land surface temperature; Spatial and temporal characteristics; Northwest China

陆气相互作用对各种尺度的天气和气候变化都存在显 著影响。在陆气相互作用中,土壤温度对大气环流、气候变 化,乃至干旱等灾害性极端天气气候的作用尤为重要^[1-5]。 不少学者对我国地温的变化进行了研究^[6-8],目前相关工作 主要集中于冬春季地温变化,而对整个西北地区地温年平均 地温的长期演变规律缺少较全面的分析^[9-10]。因此,笔者利 用 1960—2004 年西北地区陕西、宁夏、甘肃、新疆、青海和内 蒙古等省、自治区 136 个台站地表 0 cm 温度观测数据,对近 45 年西北地区年平均地表温度的时空变化特征进行分析。

1 资料与方法

地表温度数据采用中国气象数据网提供的西北地区 136 个台站 1960—2004 年的月平均 0 cm 地温资料,该资料经过 了较严格的质量控制和检查。采用经验正交分解(EOF)和 旋转经验正交分解(REOF)^[11]来研究地表温度的整体空间 分布和局地异常敏感区。采用施能^[12]定义的气候趋势系数 分析近45 年来西北地区地表的变化趋势。采用 Marr 小波分 析^[13-14]地表温度变化的多时间尺度变化特征。

基金项目 国家自然科学基金项目(41405069,91537214);四川省教育 厅重点项目(16ZA0203);成都信息工程大学中青年学术带 头人科研基金项目(J201516);引进人才启动基金项目 (KYTZ201517)。

2 结果与分析

2.1 西北地区年平均地表温度的空间分布 由图 la 可看 出,1960—2004 年西北地区年平均地表温度的空间分布较为 复杂,受海拔、纬度等影响,地温高低值区交错分布。高温区 主要分布在陕西、甘肃以及新疆东部和西南部,年平均地表 温度一般都在 10.0 ℃以上,地表温度的最高中心位于新疆 吐鲁番,可达 17.6 ℃;青海和新疆北部地区为相对低值区, 最低中心在青海托勒,年平均地表温度线性趋势(图 1b)表 明,近 45 年西北大部分地区年平均地表温度均表现为显著 的升温趋势,仅新疆中部、青海东南部和陕西东南部等地区 地表温度出现降低趋势,但线性趋势系数一般较小,未能通 过显著性检验。

2.2 西北地区年平均地表温度的空间异常特征 EOF分析 表明,前3个模态累计方差贡献共计72.65%(表1)。从第1 模态空间分布(图2a)可看出,近45年西北地区为一致的正 值分布;西北地区东部、中部和西部分别存在大值分布区,正 值中心分别位于青海海源(0.95)、甘肃安西(0.91)和新疆若 羌(0.91);这一空间类型方差贡献为59.08%(表1),反映了 受大尺度天气气候系统的影响,西北地区地表温度表现为全 区一致的偏高或偏低。第2模态对应的主成分方差贡献相 对较小,为7.84%(表1),说明西北地区年平均地表温度存

作者简介 陈笑笑(1995—),女,湖北襄阳人,本科生,专业:大气科学。*通 讯作者,副教授,博士,硕士生导师,从事气候变化研究。
 收稿日期 2017-06-07

注:图 1b 中阴影表示通过 0.01 显著性水平检验

Note: Shadows in Fig. 2b are indicated by 0.01 significance level test

图 1 1960—2004 年西北地区年平均地表温度的空间分布(a)和趋势相关系数(b)

Fig. 1 Spatial distribution (a) and trend correlation coefficient (b) of annual mean surface temperature in Northwest China from 1960 to 2004

在一定的局地变化特征。由图 2b 可见,新疆、甘肃和内蒙古 为主要的正值分布区,正值中心位于新疆塔城,为0.60;而青 海、甘肃南部和陕西则为负值分布区,负值中心在青海河南, 达-0.69。这种南北反向的分布特征突出反映了西北地区 的北部年平均地表温度偏高(低)、南部年平均地表温度偏低 (高)的特点。第3模态反映了西北地区中部地表温度与东、 西部相反变化的特点;新疆北部和陕西为主要正值区,正值 中心在新疆乌鲁木齐,为0.71;新疆南部、青海和甘肃是主要 负值区,负值中心在青海班玛县,中心值为-0.48(图 2c)。

为进一步研究西北地区年平均地表温度的局地特征,取前10个模态(累积方差达87.06%)进行旋转,按旋转载荷向量绝对值>0.4的地区基本布满全区位标准,得到西北地区年平均地表温度的5个主要空间异常区(图3)。第I区一西北东部区,包括宁夏、陕西、甘肃南部等地区,大值中心位于陕西宝鸡,为0.93,方差贡献为23.88%;第II区一西北北部

表1 前10个模态对总方差的贡献率

	Trance			70
	旋转前 Before the rotation		旋转后 After the rotation	
序号 No.	方差贡献 Variance contribution	累计贡献 Cumulative contribution	方差贡献 Variance contribution	累计贡献 Cumulative contribution
1	59.08	59.08	23.88	23.88
2	7.84	66.92	16.55	40.43
3	5.73	72.65	12.18	52.61
4	3.72	76.37	21.33	73.94
5	2.65	79.02	3.23	77.17
6	2.11	81.13	2.95	80.12
7	1.92	83.05	1.75	81.87
8	1.40	84.45	1.72	83.59
9	1.39	85.84	1.84	85.43
10	1.22	87.06	1.63	87.06

Fig. 2 The spatial distribution of the first (a), second (b), third (c) modal of annual mean surface temperature in Northwest China from 1960 to 2004

区,大值区包括新疆北部和内蒙古等地,中心在新疆阿勒泰 市,为0.94,方差贡献为16.55%;第Ⅲ区一新疆南部区,大值 区主要为新疆南部,中心在新疆莎车县,达-0.84,方差贡献 为12.18%;第Ⅳ区一西北中部区,大值区包括青海、甘肃和 新疆东南部等地区,中心在甘肃合作市,为0.81,方差贡献为 21.33%;第Ⅴ区一新疆中部区,大值区在新疆中部区,中心在 新疆库车县,为0.74,方差贡献为3.23%。

2.3 西北地区年平均地表温度的时间演变特征

2.3.1 各异常区代表站年平均地表温度的年际变化。以各 异常区旋转载荷向量值最大站点为代表站进行该异常区年 平均地表温度的变化趋势分析,由图4可见,西北东部区(代 表站宝鸡)近45年来年平均地表温度经历了高一低一高的 过程,20世纪60年代初到70年代末,尽管其年际变化非常 明显,但其变化趋势相对较为平缓,主要表现为降温趋势; 1978年前后年平均地表温度开始再次降低,到90年代前期 达到最低,1995年后年平均地表温度明显升高。西北北部区 (代表站阿勒泰)年平均地表温度在20世纪70年代之前为 较明显的降温趋势,70年代初开始显著升温,一直持续到21 世纪初期。新疆南部区(代表站莎车)年平均地表温度近45 年中呈明显的增加趋势。西北中部区(代表站合作)年平均 地表温度经历了由低到高的过程,20世纪80年代之前为相 对偏低期,80年代到21世纪初为相对偏高期。新疆中部区 (代表站库车)年平均地表温度为高一低一高的抛物线型,20 世纪70年代中期前偏高,70年代末至80年代后期为降温趋势,90年代后期开始呈明显的升温趋势。总体来看,西北东 部区、西北中部区和新疆中部区年平均地表温度都经历了 高一低一高的过程,而西北北部区和新疆南部区年平均地表 温度近45年中为较一致的升温趋势。

图 3 1960—2004 年西北地区年平均地表温度的第1(a)、第2(b)、第3(c)、第4(d)、第5(e)旋转模态空间分布

Fig. 3 The spatial distribution of the first (a), second (b), third (c), forth (d), fifth (e) rotated modal of annual mean surface temperature in Northwest China from 1960 to 2004

图 4 1960—2004 年西北地区各区代表站年平均地表温度变化

 Fig.4 Change of annual mean surface temperature of the representative stations in Northwest China from 1960 to 2004

 2.3.2 各代表站年平均地表温度周期分析。由图 5 可知, 西北东部区(宝鸡)年平均地表温度在 8 ~ 16 年长时间变化

尺度上经历了偏少一偏多一偏少的交替过程;西北北部区 (阿勒泰)年平均地表温度在16~32年长时间变化尺度上主 要表现为由低到高的变化周期,而在4~8年的小时间尺度 上,表现为低一高一低一高……共3个循环交替过程;新疆 南部区(莎车)在16~32年的长时间变化尺度上,该地区年 平均地表温度在 20 世纪 80 年代初之前偏低,之后偏高;西 北中部区(合作)在 16~32 年尺度上经历了由少到多的变化 过程,突变时间在 20 世纪 80 年代中期;新疆中部区(库车) 年平均地表温度在 8~16 年长时间变化尺度上经历了偏 少一偏多一偏少的交替过程。

图 5 1960—2004 年西北地区各区代表站年平均地表温度的小波指数分布

 Fig. 5
 Wavelet index distribution of annual mean surface temperature of the representative stations in Northwest China from 1960 to 2004

 3
 结论

(1)受海拔和纬度影响,西北地区年平均地表温度空间 分布复杂,高、低温区交错分布,陕西、甘肃以及新疆东北部 和南部是西北地表高温区,青海和新疆北部地区为相对低温 区;近45年来整个西北地区年平均地表温度基本上都表现 为明显的升高趋势。

(2)EOF分析表明,受大尺度环流和气候背景影响,第1 模态反映了全区年平均地表温度一致偏高或偏低的变化特征。西北地区年平均地表温度也存在东西及中部与东、西部 相反的差异。

(3)REOF分析表明,西北年平均地表温度空间异常区 可分为5个,即西北东部区、西北北部区、新疆南部区、西北 中部区和新疆中部区。西北东部区、西北中部区和新疆中部 区年平均地表温度均经历了高一低一高的过程,而西北北部 区和新疆南部区年平均地表温度呈一致的增加趋势。

(4)小波分析表明,各异常区的显著周期及其年代变化 具有一定差异,各异常区年平均地表温度均存在 8~16 或 16~32年的长周期,西北北部区还存在 4~8年的短周期。 参考文献

[1] 汤懋苍,孙淑华,钟强,等. 下垫面能量储放与天气变化[J]. 高原气象,

- [2] 李超. 青藏高原 0.8m 地温异常与我国汛期降水的关系[J]. 成都气象 学院学报,1995,10(2):175-181.
- [3] 赵红岩,杨瑜峰,梁东升,等.中国北方沙尘暴与地温场的相关分析 [J].中国沙漠,2007,27(3):509-513.
- [4] 费晓玲,丁春兰.甘肃黄土高原地温与冬小麦发育期的关系分析[J]. 干旱气象,2009,27(2):148-151.
- [5] 张俊鹏,孙景生,刘祖贵,等. 不同麦秸覆盖量对夏玉米田棵间土壤蒸发和地温的影响[J]. 干旱地区农业研究,2009,27(1):95-100.
- [6] 陆晓波,徐海明,孙丞虎,等. 中国近 50 a 地温的变化特征[J]. 南京气象学院学报,2006,29(5):706-712.
- [7] 王绍令. 近数十年来青藏公路沿线多年冻土变化[J]. 干旱区地理, 1993,16(1):1-8.
- [8] 李栋梁,钟海玲,吴青柏,等. 青藏高原地表温度的变化分析[J]. 高原 气象,2005,24(3):291-298.
- [9] 李英年,鲍新奎,曹广民.祁连山海北高寒湿地40~80 cm 土壤温度状况观测分析[J].冰川冻土,2000,22(2):153-158.
- [10] 韩博,吕世华,奥银焕.西北戈壁区夏季一次降水前后土壤温度变化 规律分析[J].高原气象,2009,28(1):36-45.
- [11] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999: 106-113.
- [12] 施能.北半球冬季大气环流遥相关的长期变化及其与我国气候变化的关系[J]. 气象学报,1996,54(6):675-683.
- [13] 胡增,臻石伟.子波变换在大气科学中的应用研究[J].大气科学, 1997,21(1):58-72.
- [14] 林振山,邓自旺.子波气候诊断技术的研究[M].北京:气象出版社, 1999:1-56.