一种新的锶超积累植物——串叶草

赖 捷¹, 邱孟琦², 成建峰², 冷阳春¹, 庹先国³* (1. 西南科技大学核废物与环境安全国防重点学科实验室, 四川绵阳 621010; 2. 成都理工大学核技术与自动化工程学院, 四川成都 610059; 3. 四川理工学院化学与环境工程学院, 四川自贡 643000)

摘要 [目的]筛选适合污染区生长的超积累植物。[方法]采用野外采样法,以国内某核设施退役厂放射性污染区域为研究对象,测定了该区优势植物(共9科17种)和土壤中的¹³⁷Cs、⁵⁰Sr 放射性含量,并进行了筛选与田间修复试验。[结果]污染区土壤¹³⁷Cs 和⁵⁰Sr 放射性含量的最大值分别为5.06×10⁶ 和3.29×10⁴ Bq/kg,均超过国际规定活度限值;菊科串叶草对¹³⁷Cs 的富集和转移系数均小于1.00,而对⁵⁰Sr 的富集和转移系数分别是3.25 和2.95,均大于1.00;串叶草具备⁵⁰Sr 超积累植物特征且能修复土壤中5.9%的⁵⁰Sr,可推荐串叶草对⁵⁰Sr 的污染土壤进行修复处理。[结论]首次发现并证实菊科串叶草是一种⁵⁰Sr 超积累植物,为开展污染区域修复治理工作提供参考。 关键词 铯-137;锶-90;放射性污染;植物修复技术;富集性能

中图分类号 X591 文献标识码 A 文章编号 0517-6611(2017)24-0004-05

Silphium perfoliatum: A New Hygrophyte with Strontium Hyperaccumulator Properties

LAI Jie¹, QIU Meng-qi², CHENG Jian-feng², TUO Xian-guo^{3*} et al. (1. Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, Sichuan 621010;2. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059;3. College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, Zigong, Sichuan 643000)

Abstract [Objective] The aim was to screen out hygrophyte with hyperaccumulator properties which could grow in pollution area. [Method] The field sampling method was adopted. On the basis of a nuclear facility decommissioning domestic factory, the content of ¹³⁷Cs and ⁹⁰Sr was determined in both dominant species (17 species, 9 families) and soil in polluted areas, and dominant species screening and phytoremediation tests were carried out. [Result] It was demonstrate that *Silphium perfoliatum* was a kind of ⁹⁰Sr-hyperaccumulator, and the maximum contents of ¹³⁷Cs and ⁹⁰Sr were 5.06 × 10⁶ Bq/kg and 3.29 × 10⁴ Bq/kg respectively, which were both above the maximum values of international regulations. The screening tests indicated that the enrichment and the transfer coefficience to ¹³⁷Cs of *Silphium perfoliatum* were both below 1.00, while the coefficience to ⁹⁰Sr were 3.25 and 2.95 respectively, which were both above 1.00. *Silphium perfoliatum* had the characteristic of ⁹⁰Sr-hyperaccumulator and was able to remedy 5.9% of ⁹⁰Sr in the soil. [Conclusion] So *Silphium perfoliatum* can achieve the phytoremediation of contaminated soil with ⁹⁰Sr, which can provide reference for the repair work of pollution area.

Key words 137 Cs; 9 Sr; Radioactive contamination; Phytoremediation technology; Enrichment of performance

137 Cs 和90 Sr 是 235 U 的裂变产物,由核设施退役、核燃料 的生产与加工过程产生。 137 Cs 可辐射 β 和 γ 射线, 90 Sr 可释 放高能β粒子,由于放射性物质会漂浮于空气中或沉降在土 壤里,对食物链各级生命体造成潜在的照射危害,如果放射 性物质剂量超标,将会对生物的生存环境造成巨大的威 胁[1],严重影响人类的健康[2]。由苏联的切尔诺贝利核事故 可以看出,放射性核素⁹⁰Sr、¹³⁷Cs会对环境造成持久危害^[3]。 针对放射性污染如何治理,目前已进行大量的研究,例如常 规的移土法 $^{[3]}$ 、客土法 $^{[4]}$ 、离子交换法 $^{[5]}$ 、氧化 – 还原法 $^{[6]}$ 等 放射性污染治理方法,这些方法因成本高、易破坏土壤结构 等缺点使其应用范围有限,但生物修复却因低成本、低扰动 等特点而备受关注[7]。如何开发一种环境友好、经济上可行 的技术来治理被放射性污染的土壤,已成为国内外研究工作 者关注的焦点。目前,我国对放射性污染的植物修复技术研 究还仅限于室内⁹⁰Sr 和¹³⁷Cs 超积累植物的筛选及植物转移 机理的探究,缺乏田间大规模的植物修复经验[8]。

植物修复技术的出现为放射性污染治理工作开辟了一条新途径。植物修复技术中的植物修复能力是植物耐受性、

基金项目 国家自然科学基金重点项目(4163000426);四川省应用基础研究计划项目(2014JY0206);西南科技大学研究生创新基金项目(16ycx002)。

作者简介 赖捷(1991—),男,四川绵阳人,硕士研究生,研究方向:放 射性废物处理与处置。*通讯作者,教授,博士,从事辐射 环境安全监测与评价研究。

收稿日期 2017-06-21

抵抗核素的能力和吸收及富集核素能力的综合表现^[8-9]。适合于放射性污染修复的植物应当具备以下特征^[10-18]:能够超量积累目标污染物,最好是地上部分;对目标污染物有较高的耐受能力;生长快,高生物量;易收割。国外研究出苋科的反枝觅、十字花科的印度芥菜和豆科的宽叶菜豆^[9]及部分菊科、藜科植物^[10]对¹³⁷Cs 较强的富集能力,而西葫芦、菊苣、木耳菜和黄秋葵等不同植物^[8-11]及茄科、藜科、菊科和禾本科等不同科属植物^[12]均对⁹⁰Sr 具有较强的富集和转移性能。笔者以国内某核设施退役厂中受¹³⁷Cs、⁹⁰Sr 污染区域为研究对象,对污染区内自然生长的9科17种植物及土壤中¹³⁷Cs、⁹⁰Sr 的放射性含量进行测定分析,筛选出适合污染区生长的超积累植物,并且在污染区内开展田间植物修复研究,初步探讨了超积累植物修复污染区土壤的可行性,以期为制定污染区域的修复治理工作提供参考。

1 材料与方法

1.1 污染区概况 污染区地处秦岭南麓,属于亚热带湿润季风气候,冬冷夏热,四季分明,雨量充沛,气候温和湿润。年均日照时数为 1 300 h,主导风为偏东风;年平均气温 16.1 ℃,6—8 月为夏季,最高气温 37.6 ℃,12 月至次年 1 月为冬季,最低气温 -5.5 ℃。一年中降雨集中在 7—9 月,占全年降雨量的 60%以上,年平均降雨量为 911.1 mm,年最大降雨量为 1 266.0 mm,年平均相对湿度为 66% ~73%,年均蒸发量为 1 463.0 mm,无霜期 220 ~260 d,适宜生物繁衍生息。污染区内生长有 200 余科 2 900 多种植物,其中菊科、豆

科、藜科、禾本科等对¹³⁷Cs、⁹⁰Sr 积累能力强的科属植物也广泛分布于附近山林沟壑中。

- 1.2 仪器与试剂 CP214型电子天平(美国奥豪斯),FY130 植物粉碎机(天津市泰斯特仪器公司),BH1216 Ⅲ型二路低本底 α、β 测量仪(北京核仪器厂),ORTEC DSPEC LF GEM55P4 83 能谱仪(美国奥塞克公司),Milli Q Element 超纯水制备系统(日本 Millipore 公司),SH230N 石墨炉消解仪(山东济南海能仪器股份有限公司)。HCl、HF、HNO。均为分析纯,经过亚沸蒸馏器纯化处理;所用水为超纯水。
- 1.3 样品采集 利用植物修复技术治理污染土壤前提条件 是植物对污染土壤具有高耐受性,因此首选本地植物作为修 复植物,以保证植物较高的生物量和耐受性^[14]。于 2015 年 9 月,根据污染区的地貌和植物分布特点重点采集了污染区 内具有明显生长优势的 17 种本土植物。

土壤样品的采集使用不锈钢钻($100 \text{ cm} \times 5 \text{ cm}$),每个样品质量不少于 1 kg,取 8 个采样点(编号#1 ~#8),共 $18 \text{ 个土样,其中 }6 \text{ 个地表样品}(位于污染区东西南北处),深度为 <math>0 \sim 5 \text{ cm}$;另外 2 个点(堆放放射性垃圾处)各取地下 $0 \sim 5 \text{ (15 }\sim 20 \text{ (35 }\sim 40 \text{ (55 }\sim 60 \text{ (75 }\sim 80 \text{ (95 }\sim 100 \text{ cm} \text{ 处土样,共采集 }12 \text{ 个。采集分布点上具有生长优势的植物样品,取植物的地上部分(茎、叶、果实等)和地下根部分,每个样品采集 <math>5 \text{ kg}$ 。植物样品分属 9 科 17 种,详细种类见表 1。

表 1 植物品种及科属
Table 1 The plant of species and genera

杜松 	4t 160 Th 17	植物科名
植物编号 Plant No.	植物种名	Family
Plant No.	Species name of plant	name of
		plant
1	马铃薯(Solanum tuberosum)	茄科
2	番茄(Spinacia oleracea L.)	茄科
3	菠菜(Spinacia oleracea L.)	藜科
4	莴笋(Lactuca sativa L. var. angustanaIrish.)	菊科
5	串叶草(Silphium perfoliatum L.)	菊科
6	向日葵(Helianthus annuus)	菊科
7	白菜(Brassica pekinensis)	十字花科
8	萝卜(Raphanus sativus L.)	十字花科
9	夹竹桃(Nerium indicu Mill.)	夹竹桃科
10	籽粒苋(Amaranthus hypochondriacus L.)	苋科
11	高羊茅(Festuca elata Keng ex E. Alexeev)	禾本科
12	玉米(Zea mays)	禾本科
13	小麦(Triticum aestivum Linn.)	禾本科
14	苜蓿(Medicago sativa Linn)	豆科
15	白三叶(Trifolium repens L.)	豆科
16	蚕豆(Vicia faba L.)	豆科
17	益母草[Leonurus artemisia(Laur.)S.Y.Hu]	唇形科

1.4 样品分析

1.4.1 分析方法。按照国家有关标准和行业标准执行分析方法, 90 Sr 的检测参照 GB 6764 – 86《发烟硝酸沉淀法》和GB11222.1 – 1989《生物样品灰中锶 – 90 的放射化学分析方法二 – (2 – 乙基已基) 磷酸酯萃取色层法》执行, 137 Cs 的检测参照 GB11221 – 89《生物样品灰中铯 – 137 的放射化学分析方法》和 γ 能谱直接测定。

1.4.2 样品制备和消解。土壤样品除去石块等杂物,烘干,压碎、碾磨、过 200 目筛,放入马弗炉内 450 ℃ 灰化 280 min 至样品呈砖红色,装于干燥器待用。植物样品分别用自来水、超纯水冲洗 3 次,于烘箱内 110 ℃ 杀青 35 min,60 ℃烘干至恒质量,用植物粉碎机粉碎,过 200 目筛后放置干燥器中待用。取 0.3 g 粉末,加 20 mL 浓硝酸,消解,取 0.3 mL 土壤消解液于 10 mL 离心管中,定容至 10 mL 待测;取 1 mL 植物消解液于 10 mL 离心管中,定容至 10 mL 待测。用 BH1216 Ⅲ 型二路低本底 α、β 测量仪测定⁵⁰ Sr 含量,ORTEC DSPEC LF GEM55P4 - 83 能谱仪测定¹⁵⁷ Cs 的含量。

1.4.3 数据分析。富集系数^[7](BCF)计算公式如下:

$$BCF = C_1/C_2 \tag{1}$$

式(1)中, C_1 为植物地上部¹³⁷Cs、⁹⁰Sr 的含量,Bq/kg; C_2 为土壤¹³⁷Cs、⁹⁰Sr 的含量,Bq/kg。

转运系数^[12](TF)计算公式如下:

$$TF = C_1 / C_2 \tag{2}$$

式(2)中, C_1 为植物地上部分¹³⁷Cs、⁹⁰Sr 的含量,Bq/kg; C_2 为植物根部¹³⁷Cs、⁹⁰Sr 的含量,Bq/kg。

2 结果与分析

2.1 污染区土壤¹³⁷ Cs、⁹⁰ Sr 的污染状况 6 个地表土壤样品的¹³⁷ Cs、⁹⁰ Sr 含量分析结果见表 2,12 个分层样品中¹³⁷ Cs、⁹⁰ Sr 含量分析结果见图 1。

表 2 地表土壤样品分析结果
Table 2 The analysis results of surface soil samples

样品编号 Sample No.	采样地点 Collection site	采样深度 Sampling depth//cm	¹³⁷ Cs Bq/kg	⁹⁰ Sr Bq∕kg
# 1	污染区西边3 m	0 ~ 5	1.33×10 ⁵	3.29×10^{4}
# 2	污染区东边4 m	0 ~ 5	8.99×10^3	6.66×10^{3}
# 3	污染区北边2 m	0 ~ 5	1.08×10^{4}	2.74×10^{3}
# 4	污染区南边3 m	0 ~ 5	386	50.8
# 5	污染区中心	0 ~ 5	1.03×10^{6}	6.95×10^{3}
# 6	污染区南边2 m	0 ~ 5	2.16×10^{3}	93.0

从图 1 和表 2 可知,18 个土壤样品¹³⁷ Cs 和⁹⁰ Sr 的含量普遍偏高。人工放射性核素¹³⁷ Cs 的豁免水平活度浓度限值为 100 Bq/kg,⁹⁰ Sr 的豁免水平活度浓度限值为 1×10³ Bq/kg,8 个样品采集点均属污染点^[14]。土壤污染集中在表层 0~5 cm,⁹⁰ Sr 含量最高为 3. 29×10⁴ Bq/kg,高于国际规定活度限值 1 个数量级,集中在污染区西边 3.0 m 处;¹³⁷ Cs 最高含量为 5.06×10⁶ Bq/kg,远高于国际规定限值 3 个数量级,属于重度污染,位于污染区西边 2.5 m 处。¹³⁷ Cs 和⁹⁰ Sr 的高放射性含量均位于污染区西边,原因在于西边曾堆积过人工放射性垃圾。另外,#7 和#8 采集点深层 1 m 处仍存在¹³⁷ Cs、⁹⁰ Sr。综合分析¹³⁷ Cs、⁹⁰ Sr 在污染区土壤的放射性含量得出,表层及分层土壤的放射性含量分布不均匀,土壤污染状况基本没有规律,污染区急需开展放射性污染土壤的治理和修复工作。

注:a. 污染区西边 2.5 m 处#7 样品放射性含量;b. 污染区东侧 1.0 m 处#8 样品放射性含量

Note; a. Radioactive content in the sample 7 in the study area on the west side of 2.5 m; b. Radioactive content in the sample 8 in the study area on the east side of 1.0 m

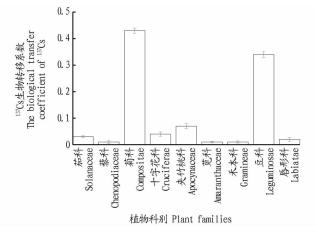

图 1 污染区分层样品放射性含量

Fig. 1 Radioactive content in layers in the study area

2.2 ¹³⁷Cs 和⁹⁰Sr 在土壤 - 植物中的富集和转运特征

2.2.1 不同科目植物对¹³⁷ Cs 和⁹⁰ Sr 的富集和转运特征。由图 2 可知,不同科目植物对¹³⁷ Cs 和⁹⁰ Sr 的富集能力不同。9科目植物的富集系数均小于 1.00, 菊科植物对¹³⁷ Cs 表现出较高的富集能力,富集系数为 0.43;其次表现出较高富集能力的

是豆科植物,而其他 8 科目植物的富集系数均低于0.08。茄科、藜科和禾本科植物对⁵⁰Sr 的富集系数均小于 1.00,其余 6 种科目植物⁵⁰Sr 的富集系数大于 1.00,说明植物地上部分吸收核素含量高于土壤中核素含量,其中菊科植物的富集系数最高为 6.16,即菊科植物对⁵⁰Sr 有较高的富集能力。

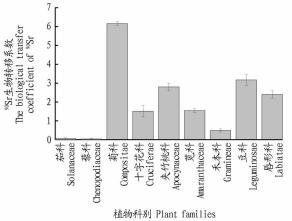
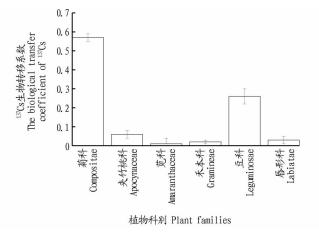


图 2 不同科植物对¹³⁷ Cs 和⁹⁰ Sr 的生物富集系数

Fig. 2 The biological enrichment coefficients of ¹³⁷Cs and ⁹⁰Sr in plant of different families


由图 3 可知,菊科植物¹³⁷ Cs 和⁹⁰ Sr 的转移能力均高于其他 5 科植物。不同科目植物对¹³⁷ Cs 的转移系数均小于 1.00,但菊科植物和豆科植物的转移系数高于其他科目植物约 1个数量级。除禾本科植物对⁹⁰ Sr 的转移系数最低外,其余 5科植物的转移系数均大于 1.00,其中菊科植物表现出超强的转运能力,转移系数为 4.36。

2.2.2 不同植物对¹³⁷ Cs 和⁹⁰ Sr 的富集和转运特征。由图 4 可知,串叶草对¹³⁷ Cs 富集系数最高为 0.31,其次是苜蓿和向日葵,且都高于其余植物约 1 个数量级。同时,其余 14 种植物的富集系数平均值为 0.03。串叶草对⁹⁰ Sr 的富集系数要远高于¹³⁷ Cs,对⁹⁰ Sr 的富集系数为 3.25,其中串叶草富集系数高于玉米、小麦和蚕豆等富集能力相对较低的植物约 2 个数量级。同时也发现夹竹桃、益母草、苜蓿、籽粒觅、白菜、白三叶和向日葵对⁹⁰ Sr 的富集系数均高于 1.00,表现出良好的富集能力,但均低于串叶草。

试验采集了玉米、马铃薯、菠菜等 9 种植物的地上部分,未采集地下根部部分。由图 5 可知,不同植物对⁹⁰ Sr 的转移系数明显高于¹³⁷ Cs 的转移系数,约 1 个数量级。其中,串叶草对¹³⁷ Cs 的转移系数最高为 0. 47,与富集系数分析结果相一致,籽粒觅、高羊茅和白三叶对¹³⁷ Cs 的转移系数最低,其余植物富集系数均在 0. 03 ~ 0. 24;除高羊茅和白三叶外,其余 6种植物对⁹⁰ Sr 的转移系数均都高于 1. 00,其中串叶草对⁹⁰ Sr 的转移能力最强,转移系数为 2. 95,益母草对⁹⁰ Sr 的转移系数为 2. 69,低于串叶草。

2.3 串叶草对¹³⁷ Cs 和⁹⁰ Sr 污染土壤的修复 前文从不同科目植物分析出本地 9 科 17 种植物的富集和转移能力,综合上述分析结果得出,菊科串叶草对¹³⁷ Cs 和⁹⁰ Sr 的富集和转移能力表现出明显的优势。串叶草为菊科植物,属多年生宿根植物,原产于北美,具有产量高、适应性广、耐寒、易繁殖和抗病力强等优点,且在污染区内生物量大、耐受性强,另外根深

也满足吸附要求。因此,在本地优势植物中,选取串叶草作 为治理¹³⁷Cs、⁹⁰Sr 污染土壤的超积累植物。通过比较种植前、 后土壤中放射性核素含量的变化,判断在污染区是否适宜开 展植物种植修复污染土壤的技术研究。

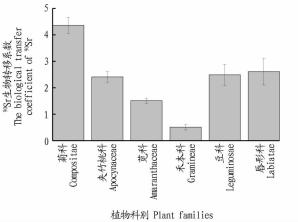
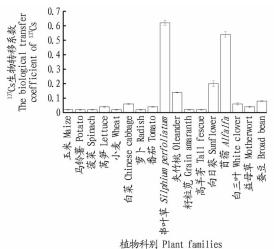



图 3 不同科植物对¹³⁷Cs 和⁹⁰Sr 的生物转移系数

Fig. 3 The biological transfer coefficient of ¹³⁷Cs and ⁹⁰Sr in plant of different families

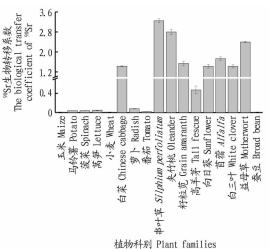
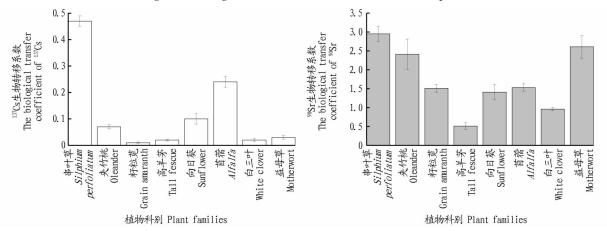


图 4 不同植物对¹³⁷Cs 和⁹⁰Sr 的生物富集系数

ig. 4 The biological enrichment coefficients of ¹³⁷Cs and ⁹⁰Sr in plant



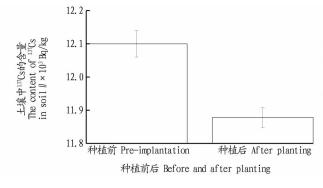

图 5 不同植物对¹³⁷ Cs 和⁹⁰ Sr 的生物转移系数

Fig. 5 The biological transfer coefficient of ¹³⁷Cs and ⁹⁰Sr in plant

由图 6 可知,种植前后污染土壤中 137 Cs 的放射性含量从 12 100 Bq/kg 降至 11 878 Bq/kg,降低 2.0%, 90 Sr 的放射性含量从 8 680 Bq/kg 降至 8 167 Bq/kg,降低 5.9%。

3 讨论

植物对核素的吸收不仅受植物科属、土壤性质的影响, 还受植物与土壤相互作用的影响^[19]。不同科、属植物对¹³⁷Cs 和⁹⁰Sr 的积累能力存在极大的差别^[20]。放射性核素¹³⁷Cs 和⁹⁰Sr 的积累主要集中在觅科、藜科和菊科^[21-23],如 Fuhrmann 等^[24]发现觅科反枝苋对¹³⁷Cs 和⁹⁰Sr 的富集作用大;赵文虎等^[21]研究 14 科 169 种植物对⁹⁰Sr 和 10 科 28 种植物对¹³⁷Cs 的富集能力,得出茄科、藜科等植物对放射性核素表现出强吸收能力;Broadley 等^[25]和杨俊诚等^[22]分别发现藜科的甜菜、菊科的白葵对¹³⁷Cs 和⁹⁰Sr 也具有很强的富集能力。积累放射性核素的植物往往集中于特定的科属内,而且许多特定科属的积累和超积累植物还尚未被开发。该研究通过对¹³⁷Cs 和⁹⁰Sr 污染区内的 9 科 17 种优势生长植物开展富集和转移性能的研究,得出菊科植物对¹³⁷Cs 和⁹⁰Sr 积累能

力要高于其他科目植物,其中菊科串叶草的积累能力最为突出。串叶草对⁵⁰ Sr 的富集系数和转移系数要高于⁵⁷ Cs,分别为 3.25 和 2.95,表现出超积累植物所具备的特征。闻方平等^[26] 报道苏丹草对 Sr 的富集系数为 1.2,转移系数为 0.5。此外,张晓雪等^[27] 报道菊科孔雀草和豆科蚕豆对 Sr 的富集系数分别为 2.03 和 1.22,苕子、豌豆、地被菊、油菜、瓜叶菊、金盏菊等其余植物对 Sr 的转富集数均小于 1.00,但在该研究中,蚕豆的富集系数为 0.01。同时,任少雄等^[28] 报道的芥菜对 Sr 的富集系数在 0.10~1.80,萝卜对 Sr 的转移系数为 1.20,向日葵和芥菜的转移系数均小于 1.00,该研究中,向日葵的转移系数为 1.41。

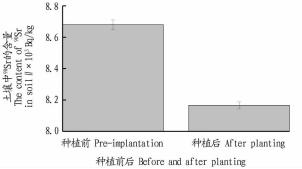
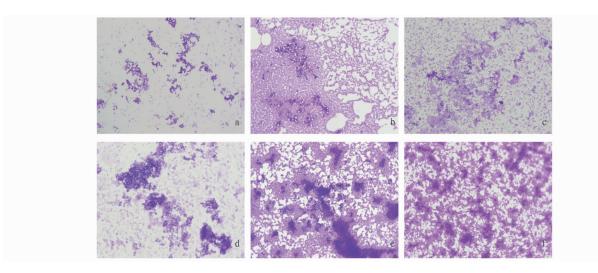


图 6 串叶草污染治理前后对比情况

Fig. 6 Contrast of pollution suitation before and after Silphium perfoliatum repair

通过筛选对比,研究 9 科 17 种植物对 137 Cs 和 90 Sr 的积累性能,菊科串叶草表现出超级累植物特征。串叶草对 137 Cs 的富集系数为 0.31,转移系数为 0.47,均小于 1.00,积累能力要弱于 90 Sr; 串叶草对 90 Sr 的富集和转移系数均大于 1.00,分别为 3.25 和 2.95,远高于其他植物。从利用串叶草对研究区污染土壤修复试验得出,串叶草可降低土壤中 2% 的 137 Cs 和 5.9% 的 90 Sr ,与 Fuhrmann 等 $^{[24]}$ 利用反枝苋可清除土壤中 2% 的 137 Cs 和 4.5% 的 90 Sr 相比,对 137 Cs 而言,串叶草修复效率低于反觅枝,但对 90 Sr 的修复效率却明显高于反枝觅。另外,与串叶草同为菊科植物的向日葵和白菜对 137 Cs 和 90 Sr 的积累性能也明显高于其他测试植物,同时也高于上述报道植物,但与串叶草相比,积累性能则低很多。


4 结论

针对国内某核设施退役厂内受放射性核素¹³⁷ Cs 和⁹⁰ Sr 污染土壤,通过筛选研究污染区内自然生长的 9 科 17 种优势植物对¹³⁷ Cs 和⁹⁰ Sr 的富集、转移特性,得出以下结论:①不同科目植物对¹³⁷ Cs 和⁹⁰ Sr 的富集和转移性能存在很大差异,其中菊科植物对土壤中¹³⁷ Cs 和⁹⁰ Sr 的富集和转移能力明显高于其他 8 科目植物;②相同科目植物对¹³⁷ Cs 和⁹⁰ Sr 的富集和转移性能也有所不同,菊科串叶草对¹³⁷ Cs 和⁹⁰ Sr 的富集和转移能力明显高于向日葵、白菜和莴笋等同科目植物;③串叶草¹³⁷ Cs 的富集和转移能力均小于 1.00,但对⁹⁰ Sr 的富集和转移系数分别为 3.25 和 2.95,均大于 1.00,对⁹⁰ Sr 具有较高的富集和转移能力,田间种植串叶草可降低土壤中 5.9%的⁹⁰ Sr。串叶草是潜在的⁹⁰ Sr 超耐受性和超积累植物,对⁹⁰ Sr 富集和转移机理还需进一步验证。

参考文献

- [1] 唐秀欢,潘孝兵. 植物修复:大面积低剂量放射性污染的新治理技术 [J]. 环境污染与防治,2006,28(4):275 278.
- [2] 吴大付,任秀娟,焦瑞峰,等. 污染土壤的植物修复[J]. 河南科技学院 学报(自然科学版),2015,43(2):1-6.
- [3] 陈青春,陈平. 植物修复技术在环境污染治理的应用现状[J]. 污染防治技术,2016,29(2):59-62.
- [4] 苏慧,魏树和,周启星.镉污染土壤的植物修复研究进展与展望[J].世界科技研究与发展,2013,35(3):315-319.
- [5] 王丹,陈晓明,唐运来,等. 放射性核素污染土壤的植物提取修复技术研究关键问题探讨[J]. 辐射防护,2016,36(2):94-103.
- [6] 刘春立.环境放射化学[J].核化学与放射化学,2009,31(S1):45-49.
- [7] 李建国,郭择德. 某尾矿库周围环境中污染物生态转移研究[J]. 辐射防护,2002,22(1):9-14.
- [8] 曹少飞,李建国,韩宝华,等. 大面积低水平放射性污染土壤的植物修复研究现状[J]. 辐射防护通讯,2016,36(1):18-22.
- [9] KOCHIAN L. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species [R]. Ithaca, NY: Agricultural Research Service, 1996.
- [10] 韩宝华,李建国. $^{\infty}$ Sr、 13 Cs 在我国野生植物中转移系数的研究现状 [J]. 辐射防护通讯,2007,27(5);20 23.
- [11] LASAT M M, NORVELL W A, KOCHIAN L V. Potential for phytoextraction of ¹³⁷Cs from a contaminated soil [J]. Plant and Soil, 1997, 195(1): 99 106.
- [12] 田军华,曾敏,杨勇,等. 放射性核素污染土壤的植物修复[J]. 四川环境,2007,26(5):93-96.
- [13] BROWN J T, MATTHERN G, GLENN A, et al. Proceedings from the workshop on phytoremediation of inorganic contaminants [R]. Idaho; Idaho National Laboratory (INL), 2000.
- [14] International Atomic Energy Agency. Application of the concepts of exclusion, exemption and clearance; Safety guide. IAEA safety standards series RS G 1.7 [M]. VIENNA; International Atomic Energy Agency, 2004; 15 60.
- [15] 王庆海, 却晓娥. 治理环境污染的绿色植物修复技术[J]. 中国生态农业学报, 2013, 21(2); 261-266.
- [16] 桑伟莲,孔繁翔. 植物修复研究进展[J]. 环境科学进展,1999,7(3): 40-44.

(下转第18页)

注:a.8 h;b.16 h;c.24 h;d.32 h;e.40 h;f.48 h

图 3 100 倍显微镜下不同培养时间单增李斯特氏菌生物膜的微观形态

Fig. 3 Microscopic morphology of Listeria monocytogenes biofilm at different incubation time under 100-fold microscope

17~24 h 为微菌落形成阶段,25~32 h 为大菌落形成阶段,33~48 h 为成熟阶段。细菌黏附阶段,菌落间的通道多,形成生物膜速度慢。微菌落形成阶段,随着培养时间的延长,生物膜结晶紫染色颜色变深,细菌开始形成微菌落,但形成速度较慢,并开始形成生物膜斑块。大菌落形成阶段,细菌形成的大量微菌落聚集成大菌落,生物膜斑块增大,开始形成较为致密的生物膜,结晶紫染色快速变深。成熟阶段,生物膜斑块快速增大并且密集,形成了具有牢固、稳定的网状三维结构的生物膜,菌落间的通道不断减少。培养 48 h 期间,单增李斯特氏菌生物膜的生物量随培养时间的增加而增大,表明细菌生物膜的生长经历了从黏附聚集到成熟的过程,在48 h 生物膜生长达到完全成熟的状态。

参考文献

- HALL-STOODLEY L,STOODLEY P. Biofilm formation and dispersal and the transmission of human pathogens [J]. Trends in microbiology,2005,13 (1):7-10.
- [2] 袁海兰,苏建,胡鲲,等. 环境因子对水霉菌生物膜形成的影响[J]. 微生物学通报,2014,41(9):1829-1836.
- [3] 徐文生,张艳艳,黄漫青,等.环境因素对长双歧杆菌 CICC6069 生物膜 生成的影响[J].中国食品学报,2012,12(4):36-42.
- [4] COSTERTON J W, STEWART P S, GREENBERG E P. Bacterial biofilms: A common cause of persistent infections [J]. Science, 1999, 284 (5418): 1318 – 1322.

- [5] O'TOOLE G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development [J]. Annual review of microbiology, 2000,54(1):49 - 79.
- [6] KOLTER R. Biofilms in lab and nature; A molecular geneticist's voyage to microbial ecology [J]. International microbiology, 2010, 13(1):1-7.
- [7] 祝司霞. 细菌生物膜的结构及形成机制的研究进展[J]. 沈阳医学院学报,2015,17(2):115-117.
- [8] EHRLICH G D, AHMED A, EARL J, et al. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes [J]. FEMS immunology and medical microbiology, 2010,59(3):269 279.
- [9] 马里奥特. 食品卫生原理 [M].4版. 北京:中国轻工业出版社,2001.
- [10] 吕素玲, 谭冬梅, 李秀桂. 广西食源性单核细胞增生李斯特菌耐药趋势分析[J]. 实用预防医学, 2013, 20(6): 734-735.
- [11] MARIJA Z, KONRAD J D, WOLFGANG K. Practical relevance of methodologies for detecting and tracing of *Listeria monocytogenes* in ready-to-eat foods and manufacture environments; A review [J]. LWT-Food science and technology, 2011,44(2);351–362.
- [12] LEMON K P, FREITAG N, KOLTER R. The virulence regulator PrfA promotes biofilm formation by *Listeria monocytogenes* [J]. Journal of bacteriology, 2010, 192(15):3969 3976.
- [13] STEPANOVI C S, VUKOVI C D, DAKI C I, et al. A modified microtiterplate test for quantification of staphylococcal biofilm formation [J]. Journal of microbiological methods, 2000, 40(2):175-179.
- [14] 张海英,罗茂凰,高旗利,等. 食品中单核细胞增生李斯特氏菌的污染概况及防制[J]. 食品研究与开发,2003,24(6):154-156.
- [15] 郑俏慧. 冻水产品中单核细胞增生李斯特氏菌的检验研究[J]. 食品工程,2010 (1):58-60.
- [16] 刘彤,陈昌瑜,韩北忠,等. 单核增生李斯特氏菌生物被膜的形成及控制[J]. 食品研究与开发,2010,31(2):163-166.

(上接第8页)

- [17] 聂亚平,王晓维,万进荣,等. 几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J]. 生态科学,2016(2):174-182.
- [18] 郑洁敏,宋亮. 放射性 Cs 污染土壤的植物修复及其影响因素[J]. 杭州农业科技,2006(1):33-35.
- [19] 王胜荣,张劲松,胡银,等. Cs、Sr、Co 在土壤中的吸附与迁移研究 [C]//全国核化学与放射化学学术讨论会.第十一届全国核化学与放射化学学术讨论会论文摘要集.北京:中国核学会核化学与放射化学分会,2012,45-46.
- [20] 唐永金,罗学刚,曾峰,等.不同植物对高浓度 Sr、Cs 胁迫的响应与修复植物筛选[J]. 农业环境科学学报,2013,32(5):960-965.
- [21] 赵文虎,徐世明,侯兰欣,等.农作物食用部分中⁹⁰ Sr、¹³⁷ Cs 含量的早期 预报:对⁹⁰ Sr、¹³⁷ Cs 具有高浓集力植物的筛选[J].中国核科技报告, 1996(SI):272-291.
- [22] 杨俊诚,朱永懿,陈景坚,等. 植物对¹³⁷ Cs 污染土壤的修复[J]. 核农学报,2005,19(4): 286 290.

- [23] DUSHENKOV S, MIKHEEV A, PROKHNEVSKY A, et al. Phytoremediation of radiocesium-contaminated soil in the vicinity of chernobyl, u-kraine [J]. Environmental science & technology, 1999, 33(3):469 475.
- [24] FUHRMANN M, LASAT M M, EBBS S D, et al. Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation [J]. Journal of environmental quality, 2002, 31 (3):904.
- [25] BROADLEY M R, WILLEY N J. Differences in root uptake of radiocaesium by 30 plant taxa [J]. Environmental pollution, 1997, 97 (1/2):11 – 15.
- [26] 闻方平,王丹,徐长合,等,苏丹草对¹³ Cs 和⁸⁸ Sr 胁迫响应及吸收积累特征研究[J]. 辐射研究与辐射工艺学报,2009,27(4);212 -217.
- [27] 张晓雪, 王丹, 张志伟, 等. 水培条件下十种植物对** Sr 和 ** Cs 的吸收和富集[J]. 北方园艺, 2009(10):65-67.
- [28] 任少雄,王丹,闻方平,等.4 种植物对¹³ Cs 和⁸⁸ Sr 污染土壤的修复研究[J]. 西北植物学报,2012,32(7):1433 1439.