胡麻种子产量与主要农艺性状的多重分析

伊六喜 1 ,萨如拉 2 ,张 军 1* ,斯钦巴特尔 1 ,贾霄云 1 ,高凤云 1 ,周 宇 1 ,张立华 1 ,任龙梅 1

(1. 内蒙古农牧业科学院,内蒙古呼和浩特 010031;2. 包头医学院药学院,内蒙古包头 014060)

摘要 [目的]探寻影响胡麻种子产量的主要农艺性状,为选育高产胡麻品种提供科学依据。[方法]对343 份胡麻种质的种子产量与株高、工艺长度、分枝数、株果数、果粒数、干粒重、开花日数、全生育日数8 个主要农艺性状进行相关性、多元回归和通径分析。[结果]胡麻的主要农艺性状变异系数达3.83%~24.93%,平均变异系数为16.77%,平均遗传多样性指数为1.97;株果数、果粒数、干粒重对种子产量的总影响达到92.17%,能较好地预测胡麻种子产量的变化;株果数和分枝数与种子产量成极显著正相关(P<0.01),而且株果数对种子产量的直接作用最大(P=0.742),相关系数最高(r=0.776)。[结论]株果数是决定胡麻种子产量的主要农艺性状。

关键词 胡麻;种子产量;农艺性状;相关性分析;多元回归;通径分析

中图分类号 S563.2 文献标识码 A 文章编号 0517-6611(2018)06-0033-04

Multiple Analysis of Seed Yield and Main Agronomic Traits in Flax

YI Liu-xi¹, SA Ru-la², ZHANG Hui¹ et al (1. Inner Mongolia Academy of Agriculture and Husbandry Sciences, Huhhot, Inner Mongolia 010031; 2. College of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060)

Abstract [Objective] To explore the main agronomic traits affecting seed production of *Linum usitatissimum* L., and to further provide scientific basis for breeding high-yield varieties. [Method] The correlation analysis, multiple regression analysis and path analysis between seed yield and eight main agronomic traits of 343 *L. usitatissimum* germplasm were carried out, including plant height, stem length, branch number, bolls per plant, seeds per boll, 1 000-seed weight, flowering days, number of growing days. [Result] The variation coefficient of main agronomic traits was 3.825% - 24.928% with the average coefficient of variation being 16.76%, the average genetic diversity index was 1.97. The impact of three factors (capsule number per plant, seeds per capsule, 1 000-seed weight) on *L. usitatissimum* seed yield reached 92.17% or more, which could well predicted the change of seed production. Capsule number per plant and branch number had extremely significant positive correlation (P < 0.01) to seed yield, the direct effect of capsule number per plant on seed yield was the largest (P = 0.742) with its correlation coefficient being the highest (P = 0.776). [Conclusion] Capsule number per plant was the main agronomic trait determining the seed yield.

Key words Linum usitatissimum L.; Seed yield; Agronomic traits; Correlation analysis; Multivariate linear regression; Path analysis

胡麻(Linum usitatissimum L.),也叫油用亚麻或油纤兼用亚麻,为亚麻科亚麻属一年生草本作物。按用途可分为纤维用亚麻、油用亚麻和油纤兼用亚麻 3 种类型^[1]。胡麻虽然具有抗旱、耐瘠、适应性强等特性,但粗放育种并不能获得高产、稳产。胡麻也同其他作物一样,必须有良好的育种目标,才能充分发挥增产潜力^[2]。胡麻产区大多为干旱冷凉地区,自然条件较差。大幅度提高胡麻单产,必须加强常规育种,不断提高抗御自然灾害的能力。同时在此基础上,根据胡麻的生育规律,因地制宜,讲究育种技术,实行科学种田,才能实现高产稳产、低成本^[3]。我国胡麻种植的主产区包括内蒙古、甘肃、宁夏、河北、新疆等^[4-5]。

胡麻种质资源是胡麻遗传改良和相关基础研究的物质基础。关于胡麻种质资源产量与农艺性状间多重分析研究报道较少^[6-8]。然而种质的主要农艺性状相关性研究对种质资源的收集、保存、分类、鉴定以及育种都是非常必要的。不同遗传背景的地方品种在长期的杂交选育过程中,形成了丰富、独特的种质资源。黑龙江省农业科学院对"八五""九五"期间收集的 464 份国内外胡麻种质资源进行农艺性状、产量性状、抗逆性鉴定及综合评价,筛选出早熟资源 261 份、种子产量较高的资源 137 份、抗逆性强资源 60 份^[9]。杜光

基金项目 内蒙古自治区自然科学基金(亚麻品质性状与 SSR 标记的 关联分析)(2017MS0383);国家自然科学基金(采用连锁不平衡关联分析技术定位胡麻脂肪酸成分相关 QTL)(31760400);国家特色油料产业技术体系(CARS-14)。

作者简介 伊六喜(1985—),男,内蒙古兴安盟人,助理研究员,博士, 从事作物遗传育种学研究。*通讯作者,研究员,从事作物 遗传育种研究。

收稿日期 2017-12-08

辉等^[10]对73份亚麻种源农艺性状和ISSR标记分析评价,筛选出该地栽培的优良杂交后代。笔者以343份胡麻品系为材料,对其株高、工艺长度、分枝数、株果数、果粒数、千粒重、开花日数、全生育日数、种子产量9个农艺性状进行多重分析,揭示种子产量与主要农艺性状之间相关性,为今后胡麻育种提供科学依据。

1 材料与方法

- **1.1 材料** 供试材料为内蒙古农牧业科学院胡麻课题组近几年育成品系共 343 份胡麻种质材料。
- 1.2 方法 2015 年 4 月参试种质材料种植于内蒙古农牧业科学院试验田,每个品系种 3 行,每行长 1 m,3 次重复,每品系随机取 20 株进行考种。参考《亚麻种质资源描述规范和数据标准》[11],共调查整理了 9 个农艺性状,包括株高 (x_1) 、工艺长度 (x_2) 、分枝数 (x_3) 、株果数 (x_4) 、果粒数 (x_5) 、千粒重 (x_6) 、开花 日数 (x_7) 、全生 育 日数 (x_8) 和种子产量(y)[12-14]。
- 1.3 数据分析 采用 Excel、SPSS 和 DPS 完成相关分析和通径分析 [15-16]。遗传多样性大小用 Shannon Weaver 遗传多样性指数来衡量,参照朱军 [18] 的数量遗传学分析方法,划分为 10 个级别,其中 1 级 $<\bar{X}-2s$, $\bar{X}-2s$ < 2 级 $<\bar{X}-1$. 5s, $\bar{X}-1$ 1. 5s < 3 级 $<\bar{X}-1s$ $,\bar{X}-1s$ < 4 级 $<\bar{X}-0$. 5s $,\bar{X}-0$. 5s < 5 级 $<\bar{X},\bar{X}<6$ 级 $<\bar{X}\bar{X}+0$. 5s $,\bar{X}+0$. 5s < 7 级 $<\bar{X}+1s$ $,\bar{X}+1s$ < 8 级 $<\bar{X}+1$. 5s $,\bar{X}+1$. 5s < 9 级 $<\bar{X}+2s$,10 级 $\geq \bar{X}+2s$,10 别赋值(1~10),表型遗传多样性大小用 Shannon Weaver 遗传多样性指数来衡量,多态性指数定义见公式(1)。

 $H' = -\sum P_i \times \ln P_i$ 其中, P_i 为某性状第 i 个级别出现的频率 [17-18] 。

2 结果与分析

2.1 农艺性状参数计量 由表 1 可知,343 份胡麻品系的 9 个农艺性状的变异系数变化范围在 3.83% ~ 24.93%,平均 为 16.77%。其中工艺长度的变异系数最高,达到 24.93%, 其次为种子产量,达 23.07%,开花日数最小,为 3.83%,各性 状指标均存在较大的变异,变异系数由大到小排序为工艺长度、种子产量、分枝数、单株果数、千粒重、果粒数、株高、全生

育日数、开花日数。说明胡麻在工艺长度和分枝数方面具有较大的选择潜力。遗传多样性指数(H')范围为1.79~2.09,平均为1.97,其中种子产量多样性指数最大,达到2.09;其次为株高和工艺长度多样性指数,达到2.07,开花日数多样性系数最小,只有1.09。遗传多样性指数由大到小依次为种子产量、株高、工艺长度、千粒重、果粒数、分枝数、单株果数、全生育日数、开花日数。综上所述,供试胡麻种质间表型性状差异较大,表现出丰富的遗传多样性,且改良潜力较大,为胡麻育种提供优异的种质基础。

表 1 胡麻种子表型性状遗传多样性分析

(1)

Table 1 Genetic diversity of phenotypic traits of L. usitatissimum seeds

性状 Trait	均值 Mean value	标准差 Standard deviation	全距 Range	极小值 Minimum	极大值 Maximum	变异系数 Variation index//%	多样性指数 Diversity index
株高 Plant height	57.69	8.23	48.20	33.00	81.20	14.23	2.07
工艺长度 Stem length	34.23	8.53	47.10	12.00	59.10	24.93	2.07
分枝数 Branch number	3.14	0.72	5.59	1.91	7.50	22.84	1.98
株果数 Bolls per plant	16.71	3.57	23.00	11.00	34.00	21.36	1.86
果粒数 Seeds per boll	8.08	1.34	9.77	4.73	14.50	16.53	2.02
千粒重 1 000-seed weight	6.43	1.26	8.80	2.00	10.80	19.64	2.04
开花日数 Flowering days	44.91	1.72	6.00	41.00	47.00	3.83	1.79
全生育日数 Number of growing days	96.31	4.28	19.00	83.00	102.00	4.44	1.80
种子产量 Seed yield	814.27	187.82	906.30	381.60	1 287.90	23.07	2.09
均值 Average						16.77	1.97

2.2 相关性分析 由表 2 可知,36 对农艺性状组合中有 17 对性状间呈极显著正相关,有 6 对性状间呈极显著负相关,种子产量与分枝数、株果数、果粒数、干粒重均呈极显著正相关,其中种子产量与株果数的相关系数达到 0.776,明显大于与其他性状间的相关系数,说明株果数与种子产量存在紧密关联。种子产量与工艺长度呈极显著负相关,为 -0.222,表明产量随工艺长度的增大而降低。株高与工艺长度 (x_2) 、株果数 (x_4) 、果粒数 (x_5) 、开花日数 (x_7) 、全生育日数 (x_8) 均呈极显著正相关,其中株高与工艺长度 (x_2) 的相关系数达到 0.865,说明工艺长度受株高的影响较大,株高与千粒重 (x_6)

呈极显著负相关,为 - 0. 425。工艺长度(x_2)与开花日数(x_7)和全生育日数(x_8)呈极显著正相关,跟千粒重(x_6)呈极显著负相关。分枝数(x_3)与株果数(x_4)呈极显著正相关。株果数(x_4)与果粒数(x_5)开花日数(x_7)、全生育日数(x_8)呈极显著正相关。特工相关。果粒数(x_5)与开花日数(x_7)是极显著正相关,与千粒重(x_6)呈极显著负相关。千粒重(x_6)与开花日数(x_7)、全生育日数(x_8)呈极显著负相关。开花日数(x_7),与全生育日数(x_8)呈极显著页相关。农艺性状的相关系数由大到小顺序依次为:株果数(x_4)、分枝数(x_3)、千粒重(x_6)、果粒数(x_5)、开花日数(x_7)、全生育日数(x_8)、株高(x_1)、工艺长度(x_2)。

表 2 胡麻种子表型性状相关性分析

Table 2 Correlation analysis of phenotypic traits of L. usitatissimum seeds

项目 Item	y	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
\overline{y}	1								
x_1	-0.042	1							
x_2	-0. 222 * *	0. 865 * *	1						
x_3	0. 372 * *	0.001	-0.033	1					
x_4	0. 776 * *	0. 183 * *	-0.023	0. 364 * *	1				
x_5	0. 141 * *	0. 194 * *	0. 134 *	0.015	0. 196 * *	1			
x_6	0. 158 * *	-0.425 * *	-0.437 * *	0.051	-0. 122 *	-0. 331 * *	1		
x_7	0. 136 *	0. 449 * *	0. 393 * *	0.043	0. 243 * *	0. 169 * *	-0.39 * *	1	
x_8	0. 114 *	0. 314 * *	0. 247 * *	-0.012	0. 169 * *	0.117 *	- 0. 226 * *	0. 766 * *	1

注: **表示在 0.01 水平显著相关, *表示在 0.05 水平显著相关

Note: * * and * indicated significant correlation at 0.01 and 0.05 levels, respectively

2.3 多元回归分析 对胡麻种子产量与其他 8 个农艺性状 参数回归方程的显著性检验表明 P = 0.101 > 0.05,统计量

0.993,回归方程有意义,线性回归方程能够解释种子产量与其他农艺性状之间的关系。获得的多元回归方程为:

 $Y = -723.536569 + 43.14x_4 + 37.06x_5 + 109.26x_{6.0}$

多元回归分析表明,株果数 (x_4) 、果粒数 (x_5) 、千粒重 (x_6) 对胡麻种子产量(y)的决定系数 R^2 = 0. 9217,结构方程的 F 值为 13. 185,P 值为 0. 003,小于 0. 01,达到极显著差异,说明建立的回归方程是可靠的。根据方程可以推断,株果数 (x_4) 和果粒数 (x_5) 固定值时,种子产量(y)随着千粒重 (x_6) 的增加而增加;株果数每增加 1 个单位,种子产量(y)增加 43. 14 单位;果粒数每增加 1 个单位种子产量(y)增加 37. 06 单位。3 个自变量株果数 (x_4) 、果粒数 (x_5) 、千粒重 (x_6) 对胡麻种子产量(y)的总影响达到 92. 17%以上。

2.4 通径分析 通径分析具有精确、直观的特点,在遗传育种分析相关变量关系中,有着十分重要的应用。由表 3 可知,8 个农艺性状对种子产量(y)直接通径系数由大到小顺序依次为株果数 (x_4) 、千粒重 (x_6) 、工艺长度 (x_2) 、开花日数 (x_7) 、果粒数 (x_5) 、分枝数 (x_3) 、株高 (x_1) 、全生育日数 (x_8) 。

株果数 (x_4) 的直接通径系数为 0. 742,对种子产量的直接作用最大。株果数 (x_4) 对种子产量(y)的间接作用受千粒重 (x_6) 和株高 (x_1) 的负效应影响(P=-0.030,P=-0.007),但与直接作用相比,株果数 (x_4) 通过其他性状对种子产量产生的间接作用均较少,说明株果数 (x_4) 和种子产量(y)有密切关系。

千粒重 (x_6) 的直接通径系数为 0.244,对胡麻种子产量

(y)的直接作用表现为较高的正向影响,而通过株果数 (x_4) 、果粒数 (x_5) 、开花日数 (x_7) 、全生育日数 (x_8) 的负向间接作用均较小(P=-0.091,P=-0.027,P=-0.035和P=-0.001),通过株高 (x_1) 、工艺长度 (x_2) 、分枝数 (x_3) 的正效应影响为P=0.016,P=0.048,P=0.004。由此可见,千粒重 (x_6) 对种子产量(y)的影响以直接作用为主。

工艺长度 (x_2) 通过果粒数 (x_5) 、开花日数 (x_7) 、全生育日数 (x_8) 的正向间接作用,间接通径系数分别为 0. 011、0. 036和 0. 001。通过株高 (x_1) 、分枝数 (x_3) 、株果数 (x_4) 和千粒重 (x_6) 对胡麻种子产量(y)负向间接作用,间接通径系数分别为 -0.033、-0.003、-0.018、-0.107。而负向间接作用比正向间接作用大,说明工艺长度 (x_2) 对胡麻种子产量(y)的影响负向间接作用为主。

开花日数 (x_7) 对胡麻种子产量(y)的直接通径系数为P=0.090,通过株果数 (x_4) 的最大间接作用为P=0.180。株高 (x_1) 、分枝数 (x_3) 、果粒数 (x_5) 、全生育日数 (x_8) 对种子产量(y)的直接通径系数分别为 - 0.038、0.081、0.082 和 0.005,通过株果数 (x_4) 的间接通径系数分别为 0.136、0.270、0.145、0.125。株高 (x_1) 、全生育日数 (x_8) 、分枝数 (x_3) 、果粒数 (x_5) 的直接作用相对较小,主要以通过株果数 (x_4) 的间接作用对种子产量产生影响。因此,在胡麻育种过程中可根据株果数 (x_4) 来选择单株。

表 3 胡麻种子主要农艺性状的通径分析

Table 3 Path analysis of main agronomic traits of L. usitatissimum seeds

性状 Trait	相关系数 Correlation coefficient	直接作用 Direct effect	$x_1 \rightarrow y$	$x_2 \longrightarrow y$	$x_3 \rightarrow y$	$x_4 \rightarrow y$	$x_5 \rightarrow y$	$x_6 \longrightarrow y$	$x_7 \rightarrow y$	$x_8 \longrightarrow y$
$\overline{x_1}$	-0.042	-0.038		-0.094	0. 001	0. 136	0.016	-0.104	0.040	0.002
x_2	-0.222	-0.110	-0.033		-0.003	-0.018	0.011	-0.107	0.036	0.001
x_3	0. 372	0.081	-0.001	0.003		0.270	0.001	0.012	0.004	-0.001
x_4	0.776	0.741	-0.007	0.002	0.029		0.015	-0.030	0.022	0.001
x_5	0. 141	0.082	-0.007	-0.014	0.001	0. 145		-0.081	0.015	0.001
x_6	0. 158	0. 244	0.016	0.048	0.004	-0.091	-0.027		-0.035	-0.001
x_7	0. 136	0.090	-0.017	-0.043	0.003	0.180	0.013	-0.095		0.004
x_8	0.114	0.005	-0.012	-0.027	-0.001	0.125	0.009	-0.055	0.069	

3 结论与讨论

胡麻是种质资源极其丰富的油料作物,农艺性状的基础研究对胡麻种质资源的收集、保存、分类、鉴定以及育种是非常必要的。在胡麻育种中,深入了解胡麻种子产量与主要农艺性状间的关联,为提高胡麻产量提高理论基础。该研究这些胡麻资源的多重分析对于胡麻育种工作具有重要意义^[6,19-21]。

多数研究针对纤维产量与农艺性状之间的相关性,且涉及的性状及样本都较少,缺乏代表性[17,20-22]。该研究中9个农艺性状的变异系数的变化范围在3.83%~24.93%,平均为16.77%;遗传多样性指数(H')范围在1.79~2.09,平均为1.97。这表明供试胡麻品系表型变异较大,遗传多样性丰富。相关性分析中9个农艺性状的相关系数由大到小顺序依次为株果数 (x_4) 、分枝数 (x_3) 、千粒重 (x_6) 、果粒数 (x_5) 、开花日数 (x_7) 、全生育日数 (x_8) 、株高 (x_1) 、工艺长度 (x_2) 。

多元回归分析表明,影响种子产量的主要农艺性状为株果数、果粒数、千粒重,说明可以用这些农艺性状来预测胡麻种子产量,影响为 92. 17% 以上。通径分析中 8 个农艺性状对种子产量(y) 直接通径系数由大到小顺序依次为株果数(x_4)、千粒重(x_6)、工艺长度(x_2)、开花日数(x_7)、果粒数(x_5)、分枝数(x_3)、株高(x_1)、全生育日数(x_8)。该试验结果为胡麻传统育种农艺性状的选择提供重要的参考信息。由于农艺性状属于数量性状,易受环境和人为影响,导致不同试验群体研究结果有所不同^[22-26],然而为了更好的服务胡麻育种,这些试验结果还需要通过多年多点的大田试验来进一步鉴定与评估。

参考文献

- [1] 路颖. 中国亚麻种质资源研究的回顾与展望[J]. 中国麻作,2000,22 (1):42-43.
- [2] 李秋芝,姜颖,鲁振家,等.300 份亚麻种质资源主要农艺性状的鉴定及评价[J].中国麻业科学,2017,39(4):172-179.

- [3] 伊六喜,斯钦,巴特尔,贾霄云,等, 胡麻种质资源、育种及遗传研究进展 [1]. 中国麻业科学,2017,39(2):81-87.
- [4] 郝荣楷, 严兴初, 党占海, 等. 我国胡麻育成品种的遗传多样性分析 [J]. 中国油料作物学报, 2014, 36(3): 334-342.
- [5] 赵利,党占海,李毅,甘肃胡麻地方种质资源品质特性研究[J].西北植学报,2006,26(12):2453-2457.
- [6] FU Y B, UYSAL H, KURT O, et al. Genetic diversity of cultivated flax (*Linum usitatissimum* L.) and its wild Progenitor pale flax (*Linum bienne* Mill.) as revealed by ISSR markers[J]. Genet Resour Crop Evol, 2010, 57 (7):1109 1119.
- [7] 邓欣, 邱财生, 陈信波, 等. 亚麻农艺性状与产量形成关系的多重分析 [J]. 西南农业学报, 2014, 27(2):535-540.
- [8] 安泽山,严兴初,党占海,等. 利用 SRAP 标记分析胡麻资源遗传多样性 [J]. 西南农业学报,2014,27(2):530 – 534.
- [9] 亢鲁毅,张辉,贾霄云,等. 我国亚麻种质资源研究进展[J]. 内蒙古农业科技,2009(2):77 78.
- [10] 杜光辉,杨建兵,梁雪妮,等. 国外优良亚麻种质资源的初步蹄选[J]. 中国麻业科学,2007,29(5);261-263.
- [11] 王玉富,粟建光.亚麻种质资源描述规范和数据标准[M].北京:中国农业出版社,2006.
- [12] 郭兴燕,田忠,梁丹妮,等.11 个燕麦品种种子产量与主要农艺性状的通径分析[J]. 草地学报,2017,25(1):142-147.
- [13] 樊明,张双喜,李红霞,等.春小麦主要农艺性状与产量的相关及通径分析[J].宁夏农林科技,2017,58(7):5-7.
- [14] 梁春波.油用向日葵杂交种(组合)主要农艺性状与单株产量的相关及通径分析[J].黑龙江农业科学,2017(1):23-27.

- [15] 刘海龙,王世发,周玉萍,等. 通径分析在油纤兼用亚麻产量分析中的 应用[J]. 安徽农业科学,2012,40(11):6416-6417,6419.
- [16] 杜家菊,陈志伟. 使用 SPSS 线性回归实现通径分析的方法[J]. 生物 学通报,2010,45(2);4-6.
- [17] 温永仙,朱军. 综合性状及其分量的多元条件分析[J]. 遗传学报, 2005,32(3):289-296.
- [18] 朱军. 数量性状遗传分析的新方法及其在育种中的应用[J]. 浙江大学学报(农业与生命科学版),2000,26(1);1-6.
- [19] SOTO-CERDA B J, DUGUID S, BOOKER H, et al. Association mapping of seed quality traits using the Canadian flax (*Linum usitatissimum L.*) core collection[J]. Theor Appl Genet, 2014, 127(4):881 –896.
- [20] 杜家菊,陈志伟. 使用 SPSS 线性回归实现通径分析的方法[J]. 生物 学通报,2010,45(2):4-6.
- [21] 张丽丽,米君,李世芳,等. 胡麻种间杂交种主要农艺性状与产量的关系研究[J]. 河北农业科学,2014,18(3):76-78.
- [22] 包海柱,高聚林,马庆,等.油用向日葵主要农艺性状的遗传效应及相关性研究[J].西北植物学报,2012,32(9):1736-1744.
- [23] 王利民,党占海,张建平,等. 胡麻农艺性状与品质性状的相关性分析 [J]. 中国农学通报,2013,29(27):88-92.
- [24] 陈英. 胡麻种质资源数量性状的多元统计分析[J]. 中国油料作物学报,2016,38(6):730-736.
- [25] 崔翠,周清元,王利鹃,等.亚麻种质主要农艺性状主成分分析与综合评价[J].西南大学学报(自然科学版),2016,36(12):11-17.
- [26] 宋军生,党占海,张建平,等. 油用亚麻品种资源农艺性状的主成分及聚类分析[J]. 西南农业学报,2015,28(2):492-497.

(上接第28页)

- [47] 张英伟, 柴立伟, 王东伟, 等. Cu 和 Cd 胁迫下接种外生菌根真菌对油 松根际耐热蛋白固持重金属能力的影响[J[. 环境科学, 2014, 35(3): 1169-1175.
- [48] 赵曦,黄艺,李娟. 外生菌根真菌 *Xerocomus chrysenteron* 产漆酶能力及 其对外加 DDT 和重金属的响应[J]. 生态环境学报,2015,24(2): 329 - 325.
- [49] 温祝桂,王杰,汤阳泽,等. 外生菌根真菌彩色豆马勃(*Pisolithus tincto-rius*)辅助植物修复重金属 Cu 污染土壤的应用潜力[J]. 生物技术通报,2017,33(4):149-156
- [50] 孟繁荣,邵景文,姜志贵,等. 外生菌根菌对高寒地区松苗猝倒病的防病效应[J]. 林业科技,1993,16(5):27-31.
- [51] CHAKRAVARTY P, HWANG S F. Effect of an ectomycorrhizal fungus, Laccaria laccata, on Fusarium damping-off in Pinus bankasiana seedlings [J]. For Path, 1991, 21 (2):97 – 106.
- [52] 郭秀珍, 谭菲. 松树某些外生菌根真菌对防治油松幼苗猝倒病的作用[J]. 云南植物研究, 1981, 3(3): 359 366.
- [53] 褚洪龙. 外生菌根真菌和深色有隔内生真菌提高油松抗松萎蔫病机制的研究[D]. 杨凌:西北农林科技大学,2017.
- [54] 余红霞. 黄土高原油松根际微生态特征及外生菌根真菌抗油松立枯病的作用[D]. 杨凌: 西北农林科技大学,2014.
- [55] 赵忠,王真辉. 菌根真菌与根际微生物间的关系及其对宿主植物的影响[J]. 西北林学院学报,2001,16(1):70-75.
- [56] 高程, 郭良栋, 外生菌根真菌多样性的分布格局与维持机制研究进展 [J]. 生物多样性, 2013, 21(4): 488-498.
- [57] ALZETTA C, SCATTOLIN L, SCOPEL C, et al. The ectomycorrhizal community in urban linden trees and its relationship with soil properties [J]. Trees, 2012, 26(3):751-767.
- [58] 谭方河,王云璋 四川松树、桉树外生菌根菌种类调查[J]. 四川林业 科技,2000,21(3):65-69.
- [59] 柯丽霞,刘必融. 黄山地区松树林外生菌根菌资源及生态分布[J]. 应用生态学报,2005,16(3):455-458.
- [60] 毕国昌, 臧穆, 郭秀珍. 滇西北高山针叶林区主要林型下外生菌根真菌的分布[J]. 林业科学, 1989, 25(1): 33 39.
- [61] HARVEY A E, JURGENSEN M F, LARSEN M J. Seasonal distribution of ectomycorrhizaein a mature Douglas-fir/Larch forest soil in Western Montana [J]. For Sci, 1978, 24(2):203 – 208.
- [62] 朱天辉,张健,胡庭兴,等.四川桉树菌根类型及林分密度对菌根真菌的影响[J].四川农业大学学报,2001,19(3):222-224.
- [63] 陈晓,白淑兰,刘勇,等. 抚育间伐对油松人工林下大型真菌的影响 [J]. 生态学报,2013,33(21):6935-6943.
- [64] 花晓梅,姜春前,刘国龙. 我国南方松外生菌根资源调查[J]. 南京林

- 业大学学报(自然科学版),1995,19(3):29-36.
- [65] 何绍昌. 贵州林木外生菌根菌种类及生态、分布的初步研究[J]. 贵州科学、1991,9(1):51-58.
- [66] WRIGHT S F, MORTON J B, SWOROBUK J E. Identification of a vesicular-arbuscular monoclonal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay [J]. Appl Environ Mierobial, 1987,53 (9): 2222 2225.
- [67] 张海涵, 唐明, 陈辉, 等. 不同生态条件下油松(*Pinus tabulaeformis*) 菌根根际土壤微生物群落[J]. 生态学报, 2007, 27(12): 5463-5470.
- [68] MARX D H, MURPHY M, PARRISH T, et al. Root response of mature live oaks in coastal South Carolina to root zone inoculations with ectomycorrhizal fungal inoculants [J]. Journal of arboriculture, 1997, 23:257 – 263.
- [69] PETRA M, KAREN B. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize [J]. Plant and soil, 2003, 251:279 – 289.
- [70] ANDRADE G, MIHARA K L, LINDERMAN R G, et al. Bacteria from rhizosphere and hyphospheresoils of different arbuscular-mycorrhizal fungi [J]. Plant and soil, 1997, 192(1):71 – 79.
- [71] 张淑香,高子勤,刘海玲. 连作障碍与根际微生态研究Ⅲ. 土壤酚酸物质及其生物学效应[J]. 应用生态学报,2000,11(5):741-744.
- [72] LINDERMAN R G. Mycorrhizal interactions with the rhizosphere microflora; The mycorrhizosphere effect [J]. Phyto pathology, 1988, 78 (3):366 – 371.
- [73] 毕银丽,胡振琪,司继涛,等. 接种菌根对充填复垦土壤营养吸收的影响[J]. 中国矿业大学学报,2002,31(3):252-257.
- [74] 陈静,陈欣,唐建军.大气二氧化碳浓度升高对植物根际微生物及菌根共生体的影响[J].应用生态学报,2004,15(12):2388-2392.
- [75] 陈瑞蕊,林先贵,尹睿,等. 有机污染土壤中菌根的作用[J]. 生态学杂志,2005,24(2):176-180.
- [76] 刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究, 2017, 15(1): 70-88.
- [77] 许美玲,朱教君,孙军德,等.树木外生菌根菌与环境因子关系研究进展[J].生态学杂志,2004,23(5):212 217.
- [78] 冯云利,秦兰,吴素蕊,等. 外生菌根菌研究概况[J]. 中国食用菌, 2013,32(6):1-3.
- [79] 朱教君,徐慧,许美玲,等. 外生菌根菌与森林树木的相互关系[J]. 生态学杂志,2003,22(6);70 76.
- [80] 乌仁陶格斯. 内蒙古典型森林类型土生空团菌生态分布的研究[D]. 呼和浩特:内蒙古农业大学,2010.
- [81] 乌仁陶格斯. 大青山油松人工林地外生菌根分布与立地条件关系 [J]. 内蒙古林业调查设计,2013,36(6):101-104.