一种防治蚜虫寄生曲霉的分离与防效试验

李静,王建红,张伊帆,王树伟 (鹤壁市人元生物技术发展有限公司,河南鹤壁 458030)

摘要 从自然染菌死亡的蚜虫体内分离得到一种杀蚜真菌,经鉴定为寄生曲霉(Aspergillus parasiticus),具有感染流行性,相对湿度75% 以上,对蚜虫的侵染率达95%以上,对培养条件进行优化。结果表明,接种量为2.5%(重量比),五米面和麸皮比例1:1,水分含量60%, 28℃,相对湿度80%,培养时间72h,产孢量最高达3.0×10°CFU/g;该株杀蚜真菌对蚜虫持效期达15d以上,明显优于10%吡虫啉和40%毒死蜱防治效果。

关键词 蚜虫;生防;寄生曲霉;分离;防效 中图分类号 S433.39 文献标识码 A 文章编号 0517-6611(2019)22-0142-04 doi:10.3969/j.issn.0517-6611.2019.22.043

开放科学(资源服务)标识码(OSID):

Isolation of an Aspergillus parasiticus on Controlling Aphids and Control Effect LI Jing, WANG Jian-hong , ZHANG Yi-fan et al (Hebi City Renyuan Blological Technology Development Co., Ltd., Hebi, Henan 458030)

Abstract An killing fungus was isolated from aphids that died from natural infection. It was identified as *Aspergillus parasitus* of aphid fungus, which had infection prevalence. When the relative humidity was above 75%, the infection rate of aphid was above 95%. By optimizing the culture conditions, the test results showed that the inoculation amount was 2.5% (according to the weight ratio of liquid seeds and solid materials); corn flour and bran ratio was 1:1, moisture 60%, 28 °C, relative humidity 80%, 72 h, the quantity of spore was 3.0×10^9 CFU/g; the effort on a-phid was more than 15 days, which was obviously better than the control effect of 10% Imidacloprid and 40% Chlorpyrifos. **Key words** Aphid; Bio-control; *Aspergillus parasiticus*; Isolation; Control effect

目前已发现的蚜虫约4400种,共有10个科^[1],蚜虫具 有种类多、数量大、繁殖快、世代重叠、危害大、分布广、寄主 杂等特点。以尖利的口器刺吸植物汁液,引起植物生长率降 低,出现叶斑、泛黄、卷叶、枯萎等甚至死亡。据统计,2010— 2011年我国26万hm²小麦中,有62.5%遭受了蚜虫的严重 危害,尤其是麦长管蚜,造成华北平原、长江中游等地区小麦 产量下降15%~60%^[2]。蚜虫以群居方式吸取植株的养分且 传播病毒病,间接危害严重,目前已知病毒的昆虫传播介体 有600种,其中275种属于蚜虫,居世界传病毒昆虫之首,如 桃蚜(Myzus persicae)是超过110种植物病毒的载体^[3]。由于 蚜虫危害严重,其防治措施的研究一直是植物保护研究工作 的重大课题。

蚜虫的防治技术可分为化学防治、物理防治以及生物防 治,化学防治仍是防治蚜虫的主要手段。化学方法防治蚜虫 效果显著且使用方便,但会污染环境,破坏生态系统。物理 方法防治蚜虫具有不产生抗性、无残留、对环境污染小等优 点,还能较快降低蚜虫数量,可充分发挥天敌自然控蚜的能 力。近年来,蚜虫生物防治技术受到广大学者的普遍关注, 包括天敌、生防菌、植物源农药等^[4-5]。

高效、安全、害虫不易产生抗药性的防治蚜虫微生物农 药的开发及应用,已是各国植保工作者的研究重点。真菌、 细菌、病毒等蚜虫病原性微生物也可广泛用于防治蚜虫,如 白僵菌、绿僵菌、蜡蚧轮枝菌、菊欧文氏杆菌,禾谷缢管蚜病 毒(RhPV)、链霉菌等病原微生物对蚜虫的防治均取得了显 著效果^[6-7]。昆虫病原真菌有显著的流行性及方便生产的特 性^[8-9]。笔者从自然染菌死亡的蚜虫体内分离出杀蚜真菌寄

作者简介 李静(1985—),女,河北秦皇岛人,农艺师,硕士,从事农业 微生物研究。 收稿日期 2019-09-28 生曲霉(Aspergillus parasiticus)并探索其最优培养条件,以期 扩充杀蚜真菌的资源库、提高蚜虫生防真菌杀蚜广谱性,为 开发新型杀蚜微生物农药提供技术基础。

1 材料与方法

1.1 菌株来源 菌株来源于河南省郑州市德谷元有机生态 园区3号地块种植的萝卜叶片上发现染菌死亡的蚜虫,2016 年11月12日09:30用无菌的塑料管采集感染蚜虫,密封后, 常温保存带回实验室内,-20℃进行保存。

1.2 杀蚜菌株的筛选

1.2.1 培养基。PDA 固体培养基:马铃薯 200 g、葡萄糖20 g、 琼脂 15~20 g、蒸馏水 1 000 mL、pH 7.0。PDA 液体培养基: PDA 固体培养基中不加琼脂。

1.2.2 杀蚜菌株的分离纯化。将采集的染菌死亡蚜虫,经 75%乙醇浸泡 30 min,用无菌蒸馏水清洗干净,PDA 平板中 加入 20 μL Amp,直接将虫体放置于 PDA 固体平板中,于 28 ℃培养 72 h。

1.2.3 杀蚜菌株液体发酵。在 250 mL 三角瓶中装入 150 mL PDA 液体培养基, 121 ℃、0.15 MPa 下灭菌 30 min。将获得的纯种 3 号杀蚜菌株孢子接入灭菌后的 PDA 液体培养基中,置于 28 ℃、150 r/min 摇床中恒温培养 24 h,得到杀蚜真菌的液体菌丝。

1.3 杀蚜真菌的固体发酵优化 设置不同碳氮比的固体物 料进行固体发酵^[10],麸皮与玉米面(重量比)按照 1:1、1:2、 1:3进行配比;水分按照 55%、60%进行组合(表 1),将液体发 酵菌丝转接至经 121 ℃灭菌 60 min 的固体发酵料上,28 ℃ 培养 72 h,相对湿度 75%以上。产生孢子后,经 3 d 自然风 干,粉碎后获得杀蚜菌株的固体孢子粉,通过 PDA 平板活菌 计数来确定最优的发酵组合^[11-12]。

表1 不同碳氮比、水分固体发酵料组合

Table 1 Different C/N and moisture of the solid medium

组合 Group	麸皮 、玉米面比例 Ratio of bran and corn flour	水分含量 Moisture content//%		
I	1:1	55		
Π	1:2	55		
Ш	1:3	55		
IV	1:1	60		
V	1:2	60		
VI	1:3	60		

1.4 蚜虫防效测定 试验 1:在郑州市中牟县德谷园蔬菜大棚内,供试作物品种是小西葫芦,选定被蚜虫寄生的区域。 杀蚜菌株孢子粉与水稀释比按照 1:500、1:750、1:1 000 倍稀 释,并设置清水空白对照。每个试验处理小区面积 15 m²,重 复 3 次试验,小区随机区组排列,采用背负式手动喷雾器喷 雾,喷液量为 600 kg/hm²,于傍晚前喷雾并保证棚内相对湿 度≥85%。为了防止处理间相互干扰,施药时用塑料膜遮隔 相邻小区。处理前在小区内 5 点取样,每个点选 2 株植株, 并在选定植株上标定 3 片无翅成蚜寄生量不少于 50 头的叶 片,调查虫口基数,于处理后 3、5、7 d 统计蚜虫数量,计算防 治效果,具体计算公式:

虫口减退率=(处理前虫口基数-处理后各天残留虫 数)/处理前虫口基数×100%^[13]

防治效果=(处理区虫口减退率-对照区虫口减退率)/ (100-对照区虫口减退率)×100%^[14]

试验2:在河南安阳棉花基地,供试作物品种是棉花蚜 虫。杀蚜菌株与水稀释比按照1:750倍稀释(作为A组),以 清水(作为CK)、化学农药10%吡虫啉(作为B组)和40%毒 死蜱(作为C组)进行防效试验对比。每个试验处理小区面 积15 m²,重复3次试验,小区随机区组排列,采用背负式手 动喷雾器喷雾,喷液量为600 kg/hm²。为了防止处理间相互 干扰,施药时用塑料膜遮隔相邻小区。处理前在小区内5点 取样,每个点选2株植株,并在选定植株上标定3片无翅成 蚜寄生量不少于50头的叶片,调查虫口基数,于处理后3、5、 7、15 d 统计蚜虫死亡情况,计算防治效果,具体计算公式:

虫口减退率=(处理前虫口基数-处理后各天残留虫数)/处理前虫口基数×100%

防治效果=(处理区虫口减退率-对照区虫口减退率)/ (100-对照区虫口减退率)×100%

1.5 杀蚜菌株鉴定 形态学鉴定:观察菌株培养特征、菌落 形态,显微镜观察菌丝及孢子形态特征。参照《真菌鉴定手 册》^[15]进行形态学鉴定。分子生物学鉴定:提取目的菌株基 因组 DNA,以通用引物进行 PCR 扩增。引物序列为 ITS1: TCCGTAGGTGAACCTGCGC; ITS4: TCCTCCGCTTATTGATAT-GC; PCR 反应条件:95 ℃ 5 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 40 s,35 个循环;72 ℃ 10 min。扩增产物进行 1.0% 琼脂糖凝 胶电泳分离、检测,切胶纯化后送至上海生工科技有限公司 测序,所得 18S rDNA 基因序列在 NCBI 数据库中进行 Blast 基因同源性比对。

2 结果与分析

2.1 分离结果 在 PDA 平板中出现 4 种不同真菌菌落,用 接种针分别将上述 4 株菌挑取到 PDA 平板中进行纯化。将 纯化后的 4 株菌株分别再进行平板产孢培养,72 h 后,制成 相同浓度的孢子悬浮液 100 mL(添加 0.2%的吐温 80),对萝 卜蚜虫进行喷雾,选出 3 号菌株对蚜虫具有杀灭作用,得到 具有杀蚜活性的纯化菌株。

2.2 杀蚜真菌的固体发酵孢子含量 按照 2%接种量接种 到不同碳氮比、水分固体物料上,28 ℃培养 72 h,相对湿度 75%以上,产生孢子后,经过 3 d 的自然风干,粉碎后获得杀 蚜菌株的固体孢子粉,采用 PDA 平板活菌计数方法^[16],统计 分析有效活菌数,结果见表 2。由表 2 可知,固体发酵料组合 Ⅳ对于发酵杀蚜真菌而言最适合,有效活菌含量达 3.0× 10° CFU/g,是较理想的杀蚜真菌固体发酵料。

表 2 不同碳氮比、水分固体物料有效活菌数

Table 2 The effective viable count of different C/N and moisture of the solid medium

组合 Group	麸皮 、玉 米面比例 Ratio of bran and corn flour	水分含量 Moisture content//%	有效活菌数 Effective viable count CFU/g		
I	1:1	55	2.1×10 ⁹		
П	1:2	55	1.8×10^{9}		
Ш	1:3	55	1.5×10^{3}		
IV	1:1	60	3.0×10 ⁹		
V	1:2	60	2.2×10 ⁹		
VI	1:3	60	2.1×10 ⁹		

2.3 **蚜虫防效分析** 在大棚西葫芦和露天棉花上进行蚜虫 的防治效果试验,通过蚜虫减退率和防效 2 个技术指标,确 定该菌株使用稀释浓度(含量),与化学杀蚜农药进行对比, 比较该株菌剂对蚜虫的持续控制时间^[17-21]。不同稀释比例 的杀蚜菌株对西葫芦蚜虫的防治效果见表 3,杀蚜菌株与化 学农药蚜虫防效比较见表 4。

从表 3 可以看出,喷雾处理 3 d 后,稀释倍数 1:500 与稀释倍数 1:750 的寄生曲霉菌孢子粉产品对蚜虫的防治效果 差异不显著,而稀释倍数 1:500 和 1:750 与稀释倍数 1:1 000 的寄生曲霉菌孢子粉产品存在显著差异。同时,喷雾处理后 3 d 稀释倍数 1:500 与 1:750 蚜虫防效均在 90%以上,稀释 倍数 1:1 000 的蚜虫防效也在 89%以上。表明寄生曲霉对蚜 虫的防治效果显著,说明喷施 5 d 后蚜虫基本均被感染,7 d 后也是持续控制状态。

1:750 杀蚜菌株对棉蚜有明显的控制效果,1~3 d 后,杀 蚜菌株与 10% 吡虫啉和 40% 毒死蜱差异不显著,随着处理时 间的延长,处理 5~15 d 后,其防效维持在 98% 以上,与 10% 吡虫啉和 40% 毒死蜱防治效果存在显著差异。

2.4 杀蚜菌株的鉴定结果 所得菌落初为白色,黄绿色,继 而变成黄褐色,分生孢子头呈放射形,少有疏松柱状,分生孢 子梗多为单层,少有双层,分生孢子椭圆形(图1、2)。将在

表 3	不同稀释比例的杀蚜菌株对西葫芦蚜虫的防治效果	
-----	------------------------	--

Table 3 The control effect of aphid at different dilution ratio on aphid of zucchini

稀释倍数 ^崩 U Dilution an ratio L∕	施量	基数 Cardinal number	喷雾后 3 d Spraying after 3 d			喷雾后 5 d Spraying after 5 d			喷雾后 7 d Spraying after 7 d		
	Usage amount L/hm ²		虫口 Population	減退率 Decline rate//%	防效 Control effect // %	虫口 Population	减退率 Decline rate//%	防效 Control effect//%	虫口 Population	減退率 Decline rate//%	防效 Control effect//%
1:500	600	208	30	85.58	92.57 aA	5	97.60	99.18 aA	0	100	100 aA
1:750	600	205	32	84.39	91.96 bA	7	96.59	98.84 aA	2	99.02	99.70 aA
1:1 000	600	198	40	79.80	89.60 cB	15	92.42	97.42 bB	5	97.47	99.23 bA
СК	600	189	367	-94.18	0	556	-194.18	0	623	-229.63	0

注:同列不同大小写字母表示不同稀释比例间差异极显著(P<0.01)和显著(P<0.05)

Note: Different capital and lowercase letters stand for significant differences at 0.01 level and significant differences at 0.05 level between different dilution ratios

			-	表4 杀蚜菌株毕	可化学农药蚜虫	1防效比较				
	Та	ble 4 The	comparison of a	phid control effe	ect between ap	hid killing strain	and chemical j	pesticide		
	药前虫口		药	后1d After1day		药后 3 d After 1 day				
处理 Treatment			虫口 Population	減退率 防效 虫□ on Decline Control Popula rate//% effect//%		虫口 Population	减退率 Decline rate//%		防效 Control effect // %	
СК	1 212	2	1 270	-5.31	0	1 256	-4.71		0	
А	1 603	;	701	56.04	58.23 aA	108	93.28 92		93.53 aA	
В	1 623		503	65.25	69.93 bB	134	91.44 91.85		91.85 bB	
С	1 308		404	68.67 70.29 cB		116	91.14		91.47 cB	
	药	后 5 d After	r 5 day 药后 7 d After 7 day			day	y药后 15 d After 15 day			
处理 Treatment	虫口 Population	减退率 Decline rate//%	防效 Control effect // %	虫口 Population	减退率 Decline rate//%	防效 Control effect//%	虫口 Population	减退率 Decline rate//%	防效 Control effect//%	
CK	1 249	-4.47	0	1 231	-2.92	0	1 230	-2.10	0	
А	18	98.91	98.93 aA	5	99.71	99.71 aA	2	99.86	99.86 aA	
В	32	97.98	$98.07~\mathrm{bB}$	157	89.85	90.20 bB	423	72.68	73.36 bB	
С	28	97.96	97.95 cB	182	85.90	86.30 cC	567	56.20	57.09 cC	

注:同列不同大小写字母表示不同稀释比例间差异极显著(P<0.01)和显著(P<0.05)

Note: Different capital and lowercase letters stand for significant differences at 0.01 level and significant differences at 0.05 level between different dilution ratios

固体培养基中培养 3~5 d 后得到的菌株菌落,提取其基因组 DNA,并采用常规的寄生曲霉菌 DNA 扩展引物对该 DNA 进 行扩增,并分别用琼脂糖凝胶电泳对 PCR 产物进行检测,切 割所需 DNA 目的条带对该菌株 ITS DNA 序列的 PCR 产物 进行测序,通过 NCBI 数据库中 Blast 基因同源性比对,该菌 株与曲霉属(*Aspergillus*)的寄生曲霉(*Aspergillu sparasiticus*) 基因同源性概率达 98%以上,综合该菌株的菌落形态、分生 孢子形态、培养条件及分子生物学鉴定结果表明,该菌株属 于曲霉属(*Aspergillus*)的寄生曲霉(*Aspergillu sparasiticus*)。

图 1 杀蚜真菌菌丝孢子梗 Fig.1 The mycelium sporophore of aphid fungus

图 2 杀蚜真菌孢子 Fig.2 The spores of aphid fungus

3 讨论

蚜虫病原真菌主要分布在接合菌亚门和半知菌亚门。 在接合菌亚门真菌中,虫霉目(Entomophthorales)真菌是一类 世界性广布的虫生真菌,在控制蚜虫方面占有重要地位。据 统计,到目前为止,在虫霉目中以蚜虫为寄主的种类有6属 21种^[22]。卷枝毛霉(*Mucorcircinelloides* Van Tieghem)对蚜虫 (*Entalonia nigronervosa* Coq)具有较好的致死效果,在蚜虫生 物防治中应用最广的真菌杀虫剂是蜡蚧轮枝菌(*V.lecanii*), 属于半知菌亚门,在热带、亚热带和温带都有分布^[23]。蜡蚧 轮枝菌寄主范围广,主要在蚧壳虫和蚜虫上。虫生镰刀菌 (Fusarium sp.)在自然界普遍分布,在一定条件下对控制蚜 虫种群起着重要作用^[24]。寄生曲霉(Aspergillus parasiticus)、 金龟子绿僵菌(Metarhizium anisopliae)、青霉(Pencillium sp.)、球孢白僵菌(Beauveria bassiana)、粉质拟青霉(Paecilomyces farinosus)和布氏白僵菌(B.brongniartii)侵染蚜虫的报 道也不少,鲜见成熟应用的案例。

该研究从自然感染死亡的蚜虫体中,分离出具有杀蚜活 性的寄生曲霉(Aspergillus parasiticus)菌株,采用固体发酵产 生孢子,高含量的孢子粉作为侵染单元,通过在小西葫芦上 瓜蚜进行生防试验以及在棉田中对棉蚜的防治效果进行试 验,结果显示该菌株表现出较强的侵染力和持续控制力,持 效期长达15 d 以上。扩充杀蚜真菌的资源库、提高蚜虫生防 真菌杀蚜广谱性,为开发新型杀蚜微生物农药提供技术 基础。

参考文献

- [1]张永军,刘爱英,梁宗琦.真菌在蚜虫生物防治中的研究进展[J].贵州 农业科学,1998,26(3):59-62.
- [2] XIA L Q,MA Y Z,HE Y, et al.GM wheat development in China; Current status and challenges to commercialization [J]. Journal of experimental botany, 2012,63(5); 1785–1790.
- [3] NAULT L.Arthropod transmission of plant viruses: A new synthesis [J].Annals of the entomological society of America, 1977,90(5):521-541.
- [4] 李娟,安德荣捕杀特黄板对烟蚜及烟田蚜传病毒病防治效果的研究 [J].中国烟草学报,2010,16(2):70-72.
- [5] 陆剑飞,郑永利,夏永锋.蔬菜主要害虫抗药性发展现状与治理对策探 讨[J].农药科学与管理,2004,52(2):10-13.
- [6] GRENIER A M, DUPORT G, PAGÈS S, et al. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid[J]. Applied and environmental microbiology, 2006, 72(3):1956–1965.
- [7] COSTECHAREYRE D, BALMAND S, CONDEMINE G, et al. Dickeya da-

(上接第84页)

盖数比 CD 基因型多 0.55 只(P<0.05)。张路培等^[9]研究了 生长分化因子 9(growth differentiation factor 9, GDF9)基因的 遗传变异与牛双胎性状的关系,发现在鲁西牛中 GDF9 基因 的 3' UTR 出现缺失突变,单胎牛群体与双胎牛群体基因型 分布有极显著差异(P=0.006),双胎牛群体的 B 等位基因频率 明显大于单胎牛群体。黄萌等^[10]将鲁西牛群体的视黄素 X 受 体基因(retinoid X receptor-gamma,RXRG)A1941G 位点的基因 型效应与双胎性状进行相关分析,发现基因型分布在鲁西单、 双胎牛群体上存在极显著差异(P<0.01),表明基因型对牛双胎 现象有较大影响,但并未发现基因型效应与双胎性状相关,且 在其他品种群体中没有发现类似现象。

该研究试验对象来自广西区内数个奶水牛场牛群,经同期化处理后有0.26%(1/384)的多排卵现象,但没有出现双胎,而水牛双胎性状是否存在关联基因型则有待进一步研究。

4 结论

奶水牛经同期化处理后出现 6.43% 的多卵泡发育现象, 但只有 0.26% 形成多排卵,多卵泡发育水牛的排卵率与单优 dantii, a plant pathogenic bacterium producing cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum[J].PLoS One,2012,7 (1):1–9.

- [8] MILNIER R J.Prospects for biopesticides for aphid control[J].Entomophaga, 1997,42(1/2):227-239.
- [9] VANDENBERG J D, SANDVOL L E, JARONSKI S T, et al. Efficacy of fungi for control of Russian wheat aphid (Homoptera: Aphididae) in irrigated wheat [J].Southwest Entomol, 2001, 26(1):73–85.
- [10] 刘金国,涂璇,涂晓嵘,等.种子工艺优化对链霉菌 702 发酵产抑真菌 生物活性物质的影响[J].江西科学,2007,25(3):253-257.
- [11] 沈萍,范秀荣,李广武.微生物学实验[M].北京:高等教育出版社, 1996.
- [12] 李贵正,张营,郑树林,等.蓝光和黑暗培养淡紫拟青霉形态及产孢量 差异[J].湖北农业科学,2018,57(4):36-38.
- [13] 梁宗琦.昆虫病原真菌的毒力[M]//《杀虫微生物》编委会.杀虫微生物:第2卷.北京:中国农业科技出版社,1989:11-18.
- [14] 蒲蛰龙,李增智.昆虫真菌学[M].合肥:安徽科学技术出版社,1996.
- [15] 魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979:235-241.
- [16] 李爱华,岳思君,马海滨,真菌孢子三种计数方法相关性的探讨[J].微 生物学杂志,2006,26(2):107-110.
- [17]于晓庆.防治小麦田蚜虫高效药种[J].农药市场信息,2018(5):52.
- [18] 周建如,张永军.高毒力杀蚜真菌菌株筛选[J].植物医生,2003,16(2): 31-33.
- [19] 唐启义,冯明光,实用统计分析及其 DPS 数据处理系统[M].北京:科学出版社,2002:1-8.
- [20] 顿玉慧,冯明光,应盛华,新型球孢白僵菌孢子悬乳剂的高效杀蚜活性及其评价方法[J].微生物学报,2003,43(6):781-787.
- [21] FENG M G, LI H P.Experimental epizootiology of Zoophthora anhuiensis (Entomophthorales) against Mypus petsicse(Homoptera:Aphididae) with a description of a modified Gompertz model for aphid epizooticd [J]. Eaviron Microbiol, 2003, 5(11):1203–1211.
- [22] 王未名.蚜虫寄生真菌-诺氏虫疫霉[M]//中国植物学会真菌学会虫 生真菌专业组.中国虫生真菌研究与应用:第1卷.北京:学术期刊出版社,1988:153-155.
- [23] 陈吉棣蜡蚧轮枝菌及其在生防中的应用[J].生物防治通报,1985,1 (4):32-37.
- [24] 李宏科.虫生镰刀菌的初步研究[M]//中国植物学会真菌学会虫生真 菌专业组.中国虫生真菌研究与应用:第1卷.北京:学术期刊出版社, 1988:211-255.

势卵泡发育水牛的排卵率差异不显著,没有出现多胎情况。 多卵泡发育与品种、季节、年龄等因素无关。

参考文献

. + . + . + . -

- [1] 陈明棠,李辉,谭正准,等.母水牛同期发情的排卵监测[J].黑龙江畜牧 兽医,2018(18):206-208.
- [2] 赵凯,田文儒,刘焕奇,等.超声诊断技术在兽医产科上的应用[J].黑龙 江畜牧兽医,2000(9):39-40.
- [3] 顾红兵,詹国英,张月昔,等.用超声诊断仪检测牛黄体的研究进展[J]. 山东畜牧兽医,2002(2):36-37.
- [4] 陈明棠,谭正准,黄健,等.不同处理方法对水牛同期发情效果的观察
 [J].中国牛业科学,2014,40(4):16-17,20.
- [5] 马会明.B 超监测母牛同期发情和超数排卵中卵巢动态变化的研究 [D].石河子:石河子大学,2005.
- [6] 姚晓磊,李鹏飞,姜晓龙,等.卵泡发育相关基因在牛优势和从属卵泡颗 粒细胞中表达的研究[J].畜牧兽医学报,2014,45(12):1957-1963.
- [7] MESSER L, WANG L, LEGAULT C, et al. Mapping and investigation of candidate genes for litter size in French Large White pigs[J]. Animal genetics, 1996, 27(S2):101–119.
- [8] 郭晓红,储明星,周忠孝,等.小尾寒羊高繁殖力候选基因 RARG 的研究 [J].畜牧兽医学报,2006,37(8):756-760.
- [9] 张路培,张小辉,许尚忠,等.牛 GDF9和 BMP15 基因遗传变异与双胎性状的关系研究[J].畜牧兽医学报,2007,38(8):800-805.
- [10] 黄萌,许尚忠,咎林森,等.牛 RXRG 基因遗传变异与双胎性状的关联 分析[J].遗传,2008,30(2):190-194.