氮磷钾施用量对甘蔗农艺性状・产量及品质的影响

韦剑锋1,韦冬萍1,韦巧云2,梁和3,梁振华2*

(1. 广西科技大学鹿山学院,广西柳州 545616;2. 广西南亚热带农业科学研究所,广西龙州 532415;3. 广西大学,广西南宁 530004)

摘要 设置 5 个处理,探究不同氮磷钾施用量对甘蔗生长及其产量的影响。结果表明, T_3 处理(尿素 900 kg/hm²、钙镁磷肥 900 kg/hm²、氯化钾 393 kg/hm²)的施肥量对提高产量及改善品质具有一定作用,其蔗茎产量达 100 099. 95 kg/hm²,蔗糖产量达 14 324. 25 kg/hm²,与其他处理差异显著; T_1 处理农艺性状、蔗茎产量及蔗糖产量最低; T_2 、 T_4 、 T_5 处理蔗茎产量及蔗糖产量高于 T_1 处理,但比 T_3 处理蔗茎产量及蔗糖产量低,因此 T_5 处理施肥量为最佳施肥方法。

关键词 甘蔗;氮磷钾;农艺性状;产量

中图分类号 S 566.1 文献标识码 A 文章编号 0517-6611(2019)15-0161-02 **doi**;10.3969/j.issn.0517-6611.2019.15.045

开放科学(资源服务)标识码(OSID): 🗐

Effects of NPK Fertilizers on Agronomic Traits, Yield and Quality of Sugarcane

WEI Jian-feng¹, WEI Dong-ping¹, WEI Qiao-yun² et al (1. Lushan College of Guangxi University of Science and Technology, Liuzhou, Guangxi 545616; 2. Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, Guangxi 532415)

Abstract To explore the effects of different N, P and K application rates on sugarcane growth and its yield, five treatments were set up in this experiment. The results showed that the T_3 treatment (urea 900 kg/hm², calcium magnesium phosphate fertilizer 900 kg/hm², potassium chloride 393 kg/hm²) had a certain effect on increasing yield and improving quality. The yield reached 100 099. 95 kg/hm² and the yield of sugar 14 324. 25 kg/hm² was significantly different from other treatments; T_1 treatment had the lowest agronomic traits, yield and sugar yield in each treatment; yield and sugar production of T_2 , T_4 , T_5 treatment was higher than T_1 treatment, but it was lower than yield and sugar production of T_3 treatment. Therefore, T_3 treatment fertilization was the best fertilization method.

Key words Sugar cane; NPK; Agronomic traits; Yield

甘蔗是我国主要糖料作物,其蔗糖产量占全国总产糖量的 60%以上。目前,国内甘蔗种植面积和产量均位居世界第3。广西作为我国最适宜种植甘蔗的地区之一^[1],然而,由于种植过程中施肥不当、土壤理化性质恶化或土壤肥力下降,导致甘蔗产量低,严重制约了甘蔗产业的可持续发展。施肥是作物肥料管理的主要内容之一。氮、磷及钾是甘蔗生长发育的重要因素,也是甘蔗产量和品质的决定因素^[2]。土壤中原有的养分数量不能满足甘蔗整个生长期的需求,因此需要施用氮、磷及钾肥料来补充。但由于甘蔗品种和区域等因素不同,各种植区施肥量和施肥方式存在较大差异^[2-4]。为此,笔者探讨甘蔗不同氮磷钾肥施用量效应,旨在为当地甘蔗生产提供参考。

1 材料与方法

1.1 试验材料 供试甘蔗品种为广西主栽品种新台糖 22 号。试验在广西柳城县太平镇试验地进行,试验地为红壤, 0~35~cm 土层 pH 5.2,有机质 16.2 g/kg,全氮 1.12 g/kg,全 钾 2.38 g/kg,全磷 1.04 g/kg,碱解氮、速效磷、速效钾含量分别为 102.65、81.98、175.21 mg/kg。种植前试验地用大型拖拉机进行犁耙整地。供试氮、磷、钾为尿素(含 $N \ge 46\%$)、钙

作者简介 韦剑锋(1978—),男,广西鹿寨人,副研究员,硕士,从事作 物营养与生理生态研究。*通信作者,农艺师,从事木薯、 甘蔗栽培和品种选育研究。

收稿日期 2019-03-03

镁磷肥(含 $P_2O_5 \ge 16\%$)、氯化钾(含 $K_2O \ge 60\%$)。

表 1 不同处理施肥量及施用方式

Γable 1 Fertilizer application amount and application mode of different treatments

处理 Treat- ments	施用量 Application amount kg/hm²			施用方式 Mode of application		
	尿素 Urea	钙镁磷肥 Calcium magnesium phosphate fertilizer	氯化钾 Potassium chloride	基肥 Basal	追肥 Top dressing	
T_1	700	700	318.0	全部磷肥、钾	5月追施氮	
T_2	800	800	355.5	肥,50%氮肥	肥 30%,7月	
T_3	900	900	393.0		追施氮肥20%	
T_4	1 000	1 000	430.5			
T ₅	1 100	1 100	468.0			

1.3 测定项目和方法

1.3.1 农艺性状。参考《中国甘蔗品种志》方法进行甘蔗各项农艺指标鉴定^[6]。2016年4月开始,每15d调查1次出苗率、分蘖率;2017年1月15日测定产量,同时调查株高、单茎重、茎径和有效茎数。

- **1.3.2** 甘蔗品质性状。在 2016 年 11 月 10 日、12 月 10 日和 2017 年 1 月 10 日分 3 次取样对各处理进行糖分分析。参考 陆国岛^[7]的方法测定蔗糖分。
- **1.4 数据分析** 采用 Excel 2007 及 SPSS 19.0 软件进行邓 肯氏新复极差法测验差异显著性。

2 结果与分析

2.1 农艺性状 由表 2 可知,不同处理甘蔗出苗率差异不显著,各处理出苗率由高到低依次为 T_3 (54.6%)、 T_4 (53.3%)、 T_5 (50.6%)、 T_2 (49.2%)、 T_1 (48.7%),其中 T_3 比其他处理增加 $1.3\% \sim 5.9\%$;各处理分蘖率均高于 50%,分蘖率由高到低依次为 T_4 (59.7%)、 T_5 (58.1%)、 T_3 (56.7%)、 T_5

(55.6%)、 T_1 (52.6%);各处理以 T_3 处理株高最高, T_1 处理最低,由高到低依次为 T_3 (366.8 cm)、 T_4 (356.3 cm)、 T_5 (354.1 cm)、 T_2 (350.3 cm)、 T_1 (342.1 cm);各处理茎径由高到低依次为 T_3 (2.84 cm)、 T_4 (2.82 cm)、 T_2 (2.81 cm)、 T_5 (2.80 cm)、 T_1 (2.69 cm);单茎重以 T_4 处理最高, T_5 处理最低,各处理单茎重由高到低依次为 T_4 (2.43 kg)、 T_3 (2.42 kg)、 T_5 (2.37 kg)、 T_2 (2.31 kg)、 T_1 (2.25 kg)。甘蔗分蘖率是影响有效茎数的重要因素,但不同处理有效茎数差异较小,由高到低依次为 T_4 (74 040 条/hm²)、 T_3 (73 936 条/hm²)、 T_5 (73 895 条/hm²)、 T_2 (73 820 条/hm²)、 T_1 (73 300 条/hm²)。

表 2 各处理农艺性状比较

Table 2 Comparison of agronomic characters of each treatment

处理 Treatment	出苗率 Emergence rate %	分蘗率 Tillering rate %	株高 Plant height cm	茎径 Stem diameter cm	单茎重 Single stem weight kg	有效茎数 Effective stem number 条/hm²
T_1	48. 7 b	52.6 b	342. 1 d	2.69 с	2. 25 b	73 300 b
T_2	49. 2 b	58. 1 a	350. 3 с	2.81 b	2. 31 ab	73 820 a
T_3	54.6 a	56. 7 ab	366.8 a	2.84 a	2.42 a	73 936 a
T_4	53.3 a	59.7 a	356. 3 b	2.82 b	2.43 a	74 040 a
T_5	50.6 ab	55.6 ab	354. 1 b	2.80 b	2. 37 ab	73 895 a

注:同列不同小写字母表示不同处理间差异显著(P<0.05)

Note; Different lowercase letters in the same column indicate significant differences between different treatments (P<0.05)

2.2 产量性状和经济性状 甘蔗蔗糖分是甘蔗品质的重要指标。由表3可知,蔗茎产量由高到低依次为 T_3 (100 099.95 kg/hm²)、 T_4 (98 049.60 kg/hm²)、 T_5 (96 982.3 kg/hm²)、 T_2 (96 423.00 kg/hm²)、 T_1 (94 609.05 kg/hm²), T_3 处理比其他处理的增幅达 T_3 2.13%~5.69%,说明 T_3 4处理增产潜力较大。不同处理对甘蔗糖分影响不同,各处理蔗糖含量

由高到低依次为 T_4 (14. 34%)、 T_3 (14. 31%)、 T_5 (14. 30%)、 T_2 (14. 13%)、 T_1 (14. 06%)。结合产量得出 T_3 处理蔗糖产量最高达 14 324. 25 kg/hm²,比 T_1 处理的 13 303. 80 kg/hm² 增幅 7. 49%,蔗糖产量由高到低依次为 T_3 (14 324. 25 kg/hm²)、 T_4 (14 060. 25 kg/hm²)、 T_5 (13 725. 45 kg/hm²)、 T_2 (13 624. 50 kg/hm²)、 T_1 (13 303. 80 kg/hm²)。

表 3 各处理糖分含量及产量比较

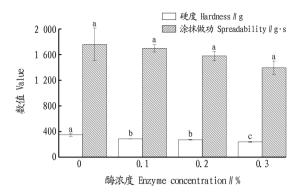
Table 3 Comparison of sugar and yield of each treatment

处理 Treatment	蔗茎产量 Sugarcane stem yield kg/hm²	蔗糖含量 Sucrose content//%				蔗糖产量
		2016-11	2016-12	2016-01	平均	Sugar yield kg/hm²
$\overline{T_1}$	94 609.05 d	13. 81	14.06	14. 41	14.06 a	13 303. 80 с
T_2	96 423.00 с	14. 05	13.07	14.71	14. 13 a	13 624. 50 bc
T_3	100 099.95 a	14. 16	14. 21	14. 55	14. 31 a	14 324.25 a
T_4	98 049.60 b	13.93	14. 47	14. 63	14. 34 a	14 060. 25 ab
T_5	96 982. 30 с	14. 04	14. 32	14. 54	14. 30 a	13 725.45 bc

注:同列不同小写字母表示不同处理间差异显著(P<0.05)

Note: Different lowercase letters in the same column indicate significant differences between different treatments (P<0.05)

3 结论


甘蔗生产中施肥的目的是培育和提高甘蔗地土壤肥力,满足甘蔗生长的营养需求,使甘蔗正常生长,最终获得高产优质的甘蔗原料^[2-4,8-9]。无论氮肥、磷肥还是钾肥,单施效果均不如组合施用,因为作物中氮、磷、钾营养成分占一定比例,相互促进肥效^[8]。如果不注意施肥过程中土壤养分含量和肥料养分的结合,养分比例就会失去平衡,不仅不能发挥施肥效果,还会减少产量、降低品质。因此,施用化肥要根据作物的需求、土壤水分和营养状况进行,以达到预期的效果^[9]。然而,由于栽培区域栽培条件不同,关于甘蔗肥料施用量和施用方式的结果并不一致,这可能与甘蔗品种、土壤

条件和播种日期有关。因此,研究不同地区甘蔗适宜肥料施肥量具有重要价值。研究表明, T_1 处理甘蔗产量与含糖量均较低; T_4 、 T_5 处理虽然含糖量较高,但产量低于 T_5 处理,从成本角度考虑,不建议在甘蔗生产上推广该种施肥方案; T_5 处理 (氯 化 钾 393 kg/hm²、钙 镁 磷 肥 900 kg/hm²、尿 素900 kg/hm²),能加快甘蔗的生长发育,提高产量及品质,降低成本,增加肥料利用,因此 T_5 处理为最佳肥料施用量。

参考文献

- [1] 李杨瑞,杨丽涛. 20 世纪 90 年代以来我国甘蔗产业和科技的新发展 [J]. 西南农业学报. 2009. 22(5): 1469-1476.
- [2] 陈林. 不同施肥量对甘蔗产量和蔗糖分的影响[J]. 南方农机,2017 (8):51.

(下转第171页)

注:小写字母不同表示差异显著(P<0.05)

Note: Different small letters mean significant differences (P<0.05)

图 5 不同酶添加量对大豆涂抹型干酪质构的影响

Fig. 5 Effect of different enzyme additions on texture of soycheese spreads

程度降低,大豆涂抹型干酪的粒径逐渐降低,细腻程度增加(图 6)。当添加量达 0.3%时,其颗粒大小与市售涂抹型干酪相近。

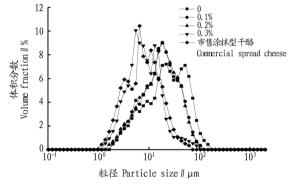


图 6 不同酶添加量对大豆涂抹型干酪粒径的影响

Fig. 6 Effects of different enzyme additions on the particle size of sov-cheese spreads

3 结论

对比市售涂抹型干酪,大豆涂抹型干酪的水分含量较高,蛋白含量较高(11.69%),脂肪含量较低(14.74%),但由于其蛋白分子量较大,大豆蛋白易加热聚集,形成凝胶,导致其颗粒较大,不如市售涂抹型干酪细腻。

大豆涂抹型干酪生产加工过程中,豆浆的凝乳方法对样品的硬度、涂抹性和风味有显著影响,对比不同的凝乳方法,发现采用乳酸菌缓慢发酵凝乳可以明显改善产品质地、口感和风味而再制工艺中乳化条件对样品的质构、细腻程度也有显著影响。最终优化乳化工艺参数为搅拌温度 80 ℃,搅拌速度 1 800 r/min,搅拌时间 30 min。酶解可以减小蛋白分子大小,减小蛋白聚集程度,通过进一步研究蛋白酶 A 添加量对样品质构、细腻程度的影响,表明添加 0. 3%蛋白酶 A,产品硬度只有 238. 83 g,虽比市售涂抹型干酪硬度略高,但其细腻程度与市售干酪相近。

参考文献

- [1] 李晴辉. 新型涂抹型大豆干酪的研究与开发[D]. 上海:华东理工大学, 2013.
- [2] 张琦. 大豆干酪加工技术研究[D]. 南京:南京农业大学,2012.
- [3] RINALDONI A N,PALATNIK D R,ZARITZKY N,et al. Soft cheese-like product development enriched with soy protein concentrates [J]. LWT-Food Science and Technology, 2014,55(1):139-147.
- [4] 高紅艳,蒋士龙,莫蓓红,等. 涂抹再制干酪中蛋白质的二级结构及其对质构的影响[J]. 中国乳品工业,2009,37(1):36-39.
- [5] 孙灵湘. 豆浆风味模拟体系的构建及各组分对其风味组成的影响[D]. 无锡:江南大学,2015.
- [6] RANI M, VERMA N S. Changes in organoleptic quality during ripening of cheese made from cows and soya milk blends, using microbial rennet[J]. Food chemistry, 1995, 54(4):369-375.
- [7] TSENG Y C, XIONG Y L. Effect of inulin on the rheological properties of silken tofu coagulated with glucono-δ-lactone[J]. Journal of food engineering, 2009, 90(4):511–516.
- [8] RUAN Q J, CHEN Y M, KONG X Z, et al. Heat-induced aggregation and sulphydryl/disulphide reaction products of soy protein with different sulphydryl contents [J]. Food chemistry, 2014, 156(4):14–22.
- [9] 阮奇珺. 大豆蛋白热诱导二硫键连接物的形成及巯基变化亚基水平研究[D]. 无锡:江南大学, 2015.
- [10] LV Y C, SONG H L, LI X, et al. Influence of blanching and grinding process with hot water on beany and non-beany flavor in soymilk [J]. Journal of food science, 2011, 76(1):20-25.
- [10] 里奧·范海默特. 化合物香味阈值汇编[M]. 刘强, 昌德寿, 汤峨, 译. 北京: 科学出版社, 2015.
- [12] 马艳丽, 曹雁平, 郑福平, 等. 奶酪的风味组分研究进展[J]. 中国乳品工业, 2013, 41(5): 36-39.
- [13] MARCHESSEAU S, CUQ J L. Water-holding capacity and characterization of protein interactions in processed cheese [J]. Journal of dairy research, 1995,62(3):479-489.
- [14] 王乐,宗学醒,闫清泉,等 关键加工工艺对涂抹再制干酪品质的影响 [J]. 中国乳品工业,2016,44(1);62-64.
- [15] 王章存,王佩,安广杰,等. 风味蛋白酶水解大豆分离蛋白的抗原性及功能特性变化[J]. 中国粮油学报,2018,33(3):48-52.

(上接第162页)

- [3] 黄琮斌、不同施肥处理对'粤糖 00-236'甘蔗生长、产量和品质的影响 [D].广州:华南农业大学、2016.
- [4] 邓展云, 刘海斌, 徐林, 等. 不同施肥水平对甘蔗新品种生长的影响 [J]. 安徽农业科学, 2012, 40(11): 6482-6483, 6523.
- [5] 梁振华,韦巧云,韦冬萍,等 2015 年广西甘蔗品种区试龙州点新植试验表现[J]. 中国糖料,2016,38(5);32-34.
- [6] 轻工业部甘蔗糖业科学研究所.中国甘蔗品种志[M].广州:广东科技出版社,1991.
- [7] 陆国盈. 广西农业大学内部讲义:甘蔗检糖技术[Z]. 南宁:作物栽培学教研室,1994;1-23.
- [8] 李恒锐,邱文武,马文清,等. 不同类型肥料对甘蔗产量及品质的影响 [1] 江苏农业科学,2014,42(10):83-85.
- [9] 何祖猛. 甘蔗施用含氯肥料的效应[J]. 湖南农业科学,2000(6):16-18.