10 份 CIMMYT 玉米自交系的育种潜势分析

张华.税红霞,庞启华,卢庭启,蒋晓芳,王秀全,何丹 (四川省绵阳市农业科学研究院,四川绵阳 621023)

摘要 [目的]探明 10 份 CIMMYT 玉米自交系在农艺、产量性状方面的配合力,为绵阳骨干自交系的改良与玉米杂交种选育提供指导。 「方法]以绵阳农科院自育系绵714、绵723 及外引系18599 为测验种,采用NCII遗传交配设计配制30 个杂交组合,对10 份 CIMMYT 玉米 自交系的配合力进行分析。[结果]10份 CIMMYT 玉米自交系中,CML522、CLYN492 具有较高的单株产量一般配合力,其效应值分别为 8.313 5、4.831 9。CML522、CLYN492 与 18599、绵 723 组配也表现出较好的特殊配合力,其中 18599×CLYN492 的产量水平超过对照 11.34%,绵723×CML522的产量水平超过对照5.19%。[结论]CIMMYT 玉米自交系CML522、CLYN492在产量性状方面表现出较好的一 般配合力,具有较好的育种利用潜力,可作为未来高产杂交种的选配模式。

关键词 玉米;自交系;一般配合力;特殊配合力

中图分类号 S513 文献标识码 A 文章编号 0517-6611(2020)09-0043-03

doi:10.3969/j.issn.0517-6611.2020.09.013

开放科学(资源服务)标识码(OSID): 画家

Analysis of Combining Ability on 10 CIMMYT Maize Inbred Lines

ZHANG Hua, SHUI Hong-xia, PANG Qi-hua et al (Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan 621023) Abstract [Objective] To explore the combining ability of 10 CIMMYT inbred lines for application on maize breeding. [Method] MIAN714, MIAN723, 18599 were chose for tester which crossed with 10 CIMMYT inbred lines to used with incomplete diallel cross design. [Result] CML522 and CLYN492 showed better yield GCA, the GCA from CML522 and CLYN492 were 8, 313, 5 and 4, 831, respectively, CLYN492 crossing 18599 had high SCA, the yield of 18599×CLYN492 increased by 11.3% comparing with CK, CML522 crossing MIAN723 had high SCA, the yield of MIAN723×CLYN492 increased by 5. 19% compared with CK. [Conclusion] The lines of CML522 and CLYN492 with high GCA had good breeding potentiality, which could be used as the matching pattern for high-yield coeno-species in future.

Kev words Maize; Inbred lines; GCA; SCA

玉米种质资源是选育玉米自交系、开展杂交种培育的物 质基础,热带、亚热带种质资源具有抗病抗逆性强、根系发 达、品质优良等特点,能够较好地适应我国热带和亚热带地 区的生态环境,是四川及西南地区玉米育种工作不可或缺的 重要种质资源[1-3]。前人针对不同来源、不同类型的热带、亚 热带种质开展了大量研究,王安贵等[4]研究了 Suwan 种质选 系与旅大红骨、瑞德等我国骨干种质的配合力和杂种优势情 况,认为 Suwan 种质遗传多样性丰富,与旅大红谷、瑞德等种 质具有较强的配合力效应,可以作为西南地区重点利用的杂 种优势模式;王永学等[4]对5个含热带血缘的玉米自交系进 行了杂种优势和配合力效应分析,认为热带种质与国内的旅 大红谷、塘四平头群有较强杂种优势,同时具有抗病抗逆性 强、叶片功能期长等特点,能够有效拓宽当前我国种质资源 的遗传基础。田树云等[5]对 12 个泰国玉米群体的配合力效 应及杂优类群划分进行了研究,结果显示 12 个泰国玉米群 体与瑞德种质有较强的配合力,与兰卡斯特、塘四平头种质 配合力效应低,其中 QI、Q10、Q11 群体在广西的利用潜力较 高:沈建华等[7] 运用分属6个不同杂种优势群的代表自交 系,对7个Suwan种质玉米自交系配合力及杂种优势模式进 行分析,结果显示西南地区玉米育种可以重点利用 Suwan 种 质×Reid 种质、Suwan 种质×旅大红种质模式进行杂交种组 配:郭向阳等[8]研究了 Suwan 种质、Tuxpeno 种质选系的配合 力,认为运用温带种质如 Lancaster 种质、Reid 种质改良热带 亚热带种质的方法是可行的,既保留了热带亚热带种质的抗

基金项目 四川省科技计划项目(17GJHZ0004)。

张华(1982-),男,四川江油人,高级农艺师,博士,从事玉 作者简介 米遗传育种工作。

收稿日期 2019-08-06;修回日期 2019-10-12

性,又保持了与其他温带种质群体的杂种优势。为提升育种 材料的抗病抗逆性,丰富种质资源的遗传基础,近年来绵阳 市农科院相继从 CIMMYT 引进 50 余份热带、亚热带自交系, 经鉴定其中10份自交系能农艺学性状优良,能较好适应绵 阳地区生态环境,可能具有一定的利用潜力。鉴于此,笔者 以 10 份 CIMMYT 玉米自交系为供试材料,采用不完全双列 杂交设计,对上述自交系在产量、农艺性状方面开展配合力 分析,以期为 10 份 CIMMYT 玉米自交系的利用、改良提供 参考。

1 材料与方法

1.1 试验材料 供试材料为绵阳农科院通过四川省科技计 划国际合作项目引进的 10 份 CIMMYT 玉米自交系和 3 份国 内测验种(由绵阳市农业科学研究院提供),供试材料的遗传 背景或来源见表 1。

表 1 10 份 CIMMYT 自交系与 3 个国内测验种的遗传背景或来源 Table 1 Genetic background of 10 CIMMYT inbred lines and 3 tester inhred lines

编号 Code	名称 Name	遗传背景 Genetic background	编号 Code	名称 Name	遗传背景 Genetic background
1	CML522	CIMMYT	9	CML491	CIMMYT
2	CLYN488	CIMMYT	10	CLYN492	CIMMYT
3	CML323	CIMMYT	11	绵 714	Suwan 种质选系
4	CLYN486	CIMMYT	12	绵 723	瑞德种质
5	CML206	CIMMYT	13	18599	PB 种质
6	CML202	CIMMYT			
7	CML494	CIMMYT			
8	CML537	CIMMYT			

1.2 试验方法 2016年冬,以3个测验种为父本,10个 CIMMYT 自交系为母本,按照不完全双列杂交设计配制 30 个杂交组合;2017 年在绵阳市农业科学研究院松垭试验基地开展田间试验,随机区组设计,双行区,每行 14 株,3 次重复,密度 54 000 株/hm²,每小区取中间 20 株获取性状数据;以小区均数为单位,对 9 个性状进行方差分析,组合间差异显著的性状采用不完全双列杂交模型计算配合力。按照优势(%)= $(F_1-CK)/CK \times 100\%$ 计算产量增幅,其中 F_1 为组合单株产量平均值。CK 为对照,计算单株产量平均值。

1.3 数据分析 采用 DPS 9.50 和 Excel 2013 软件进行数据统计分析。

2 结果与分析

2.1 组合间差异显著性检验 以小区均数为单位,对 30 个组合的 9 个性状进行方差分析。从表 2 可以看出,区组间除穗长、百粒重差异显著外,其他性状区组间差异未达显著,说明多数性状受环境影响较小;组合间各性状差异均达极显著水平,说明各组合间存在真实的遗传差异。

表 2 玉米主要农艺性状方差分析比较(F值)

Table 2 Comparison of variance analysis in main agronomic characters of maize

变异来源 Source of variation	自由度 DF	株高 Plant height	穗位高 Ear height	秃尖 Sterile length	穗长 Ear length	穗行数 Ear row number	行粒数 Kernel per row	单株产量 Yield per plant	出籽率 Seed rate	百粒重 100-kernel weight
区组 Block	2	0.763	0.432	0.932	24. 580 * *	0.801	0.057	0.094	0.061	7. 070 * *
组合 Comination	29	67. 820 * *	413. 850 * *	45.480 * *	53. 780 * *	54. 220 * *	17. 116 * *	72. 350 * *	11.620 * *	5. 543 * *
误差 Error	58	12.068	1.032	0.013	0.064	0.080	1. 193	0.004	0. 125	4. 023

注:*表示在 0.05 水平上差异显著,**表示在 0.01 水平上差异显著;误差为均方值

Note: * and * * stand for the significant differences at 0.05 and 0.01 levels, respectively; the error was the mean square

2.2 配合力分析

2.2.1 配合力方差分析。对组合间差异显著的性状进行配合力方差分析(表 3)。结果表明,除母本的百粒重 GCA 外,

其余性状的 GCA 在父本间、母本间的差异均达显著或极显著水平;9 个性状的 SCA 在组合间的差异均达到显著或极显著水平^[9]。

表 3 差异显著性状的配合力方差分析

Table 3 Analysis of variance (F value) for combining ability

变异来源 Source of variation	自由度 DF	株高 Plant height	穗位高 Ear height	秃尖 Sterile length	穗长 Ear length	穗行数 Ear row number	行粒数 Kernel per row	单株产量 Yield per plant	出籽率 Seed rate	百粒重 100-kernel weight
父本 GCA Male parent GCA	2	0. 123	2. 003 * *	48.746 3**	3. 747 0 * *	3. 191 6**	0.613 8**	2. 278 6**	2.351 0**	4. 673 5**
母本 GCA Female parent GCA	9	0.785*	0.819**	1.164 5**	1.721 1**	2.451 0**	1.665 9**	0. 883 1*	1.735 2**	0.5664
父本×母本 Male parent ×female parent	28	77.710**	408. 440 * *	10. 482 3**	38. 058 2**	33. 856 4**	14. 496 9 * *	68. 770 0 * *	8.709 2**	4. 932 4**

注:*表示在0.05 水平上差异显著,**表示在0.01 水平上差异显著;误差为均方值

Note: * and * * stand for the significant differences at 0.05 and 0.01 levels , respectively; the error was the mean square

2.2.2 一般配合力分析。被测自交系的9个性状GCA相对效应值见表4。由表4可知,3个测验种中,单株产量GCA最高的是绵723,其效应值为6.1439。10个被测系中,单株产量配合力较高的自交系有CML522、CML491、CLYN492,其效应值分别为8.3135、4.6196、4.8319,说明利用它们可能组配出高

产组合;综合农艺性状、产量性状一般配合力效应值考虑,被测系 CML522 具有较好的育种利用价值,除秃尖性状有待改良外,其余性状一般配合力效应值均有利于优良玉米杂交种的组配;3个测验种虽然都是审定品种的亲本,但是部分性状仍需继续改良,如自交系绵714的秃尖性状,绵723的行粒数性状。

表 4 测验种与被测系 9 个性状的 GCA 相对效应值比较

Table 4 Comparison of GCA effects of 9 agriculture practical characters from tester and inbred lines

亲本 Parent	株高 Plant height	穗位高 Ear height	秃尖 Sterile length	穗长 Ear length	穗行数 Ear row number	行粒数 Kernel number per row	单株产量 Yield per plant	出籽率 Seed rate	百粒重 100-kernel weight
18599	-0. 139 9	5. 190 0	32. 494 5	1. 521 5	-2. 281 4	1.208 5	-4. 186 5	-0.5112	-1.407 7
绵 714 Mian 714	-0.669 1	0. 257 7	11.816 1	2.094 1	-1.445 4	0.502 1	-1.957 4	0.9839	6. 454 1
绵 723 Mian 723	0.8088	-5.449 6	-44. 310 7	-3.6156	3.726 8	-1.710 6	6. 143 9	-0.4723	-5.046 3
CML522	-2.8169	-1.475 1	22. 781 4	0.6828	5.8916	3.8407	8.3135	0.747 7	-7.044 5
CLYN488	-1.2364	-5.056 8	4. 546 6	-0.086 9	2.918 1	-2.1974	-0.263 2	-1.4823	-2.385 9
CML323	-1.5540	-0.1584	-7.0021	-2.784 5	-7.275 8	-3.0239	-3.4477	-1.2199	4. 563 4
CLYN486	-5. 190 9	-12.276 0	-14.053 0	2. 303 8	-4.055 5	0.8614	0.458 6	-0.695 3	5. 303 3
CML206	1.3942	0.4664	9.895 5	0.1696	-2.2088	3.4914	3. 175 9	1.797 2	-3.1147
CML202	2. 266 1	1.8165	-4. 935 6	2.5040	-3.948 8	6.479 2	-13.595 5	0.4854	-0.958 2
CML494	3.707 1	7. 652 1	-11. 135 4	-2.0084	2. 171 4	-2.495 6	0.6284	1.797 2	2.6596
CML537	3.0519	9. 102 7	-7.853 1	2.529 1	1.0514	-6.9064	-4.721 5	-0.957 6	-0.7909
CML491	-4. 173 8	-3.5504	5. 883 8	4.744 6	-3.988 9	5.050 5	4.6196	-1.3512	0.023 4
CLYN492	4. 553 1	3.479 1	1.872 1	0.945 7	9.445 1	-5.100 1	4.8319	0.8789	1.744 9

2.2.3 特殊配合力分析。对组合 SCA 差异显著的性状进行分析,将 SCA 效应值按正向、负向进行组合归类(表 5)。结果显示,各性状 SCA 效应值为正向和负向的杂交组合个数差异较小,正向、负向效应值变幅较大^[10]。效应值最大(株高、穗位高、秃尖按负向最大的计)的组合中,测验种 18599、绵 723、绵

714 分别出现 3、2、1 次,被测系 CML522、CLYN488、CLYN492 各 出现 2 次。其中 18599×CLYN492 在单株产量、百粒重性状方面的 SCA 最高,绵 723×CLYN488 在出籽率、穗行数性状方面的 SCA 最高,18599×CML522 在穗长性状方面的 SCA 最高,绵 714×CML522 在行粒数性状方面的 SCA 最高。

表 5 玉米性状的特殊配合力比较

Table 5 Comparison of the SCA of maize characters

性状 Traits	正向组合数 Positively significant hybrids	负向组合数 Negatively significant hybrids	效应值变幅 Range of SCA effects	正向效应值 最大的组合 Hybrids with max Positive SCA effect	负向效应值 最大的组合 Hybrids with max negative SCA effect
株高 Plant height	13	17	-9.6267~10.7232	绵 714×CML323	18599×CML206
穗位高 Ear height	14	16	-9.836 9~21.920 0	18599×CML494	绵 723×CML323
秃尖 Sterile length	16	14	-23.972 8~23.437 9	绵 714×CML206	绵 714×CLYN492
穗长 Ear length	12	18	-6.468 9~6.621 0	18599×CML522	绵 714×CML206
穗行数 Ear row number	15	15	-13.286 0~5.800 3	绵 723×CLYN488	18599×CML494
行粒数 Kernel number per row	12	18	-10.550 5~8.962 0	绵 714×CML522	18599×CML522
单株产量 Yield per plant	15	15	-17. 225 7~15. 905 2	18599×CLYN492	绵 723×CLYN492
出籽率 Seed rate	14	16	-2.807 3~2.571 2	绵 723×CLYN488	绵 723×CML494
百粒重 100-kernel weight	17	13	-13.621 3~15.090 6	18599×CLYN492	18599×CML494

2.2.4 高产组合的杂种优势模式。以成单30为对照,根据单株产量分析30个组合的杂种优势表现。以对照的优势大于5%的原则选出5个强优势组合(表6)。从表6中可以看出,5个强优势组合中,3个组合的父本是绵723,占60%;单株产量最高的是由18599和CLYN492组配的组合,超对照单株产量增产11.34%。

表 6 单株产量对照优势大于 5%的杂交组合

Table 6 Hybrid combinations with superiority over 5% in yield per plant

编号 No.	杂交组合 Hybrid combination	单株产量 Yield per plant//kg	对照优势 Advantage of CK//%
1	18599×CLYN492	3.05	11. 34
2	绵 714×CLYN486	2.95	7. 84
3	绵 723×CML206	2.94	7. 81
4	绵 723×CML494	2.89	5. 36
5	绵 723×CML522	2.88	5. 19
6	CK(成单30)	2.74	_

3 小结

一般配合力分析结果表明, CML522、CLYN492 的单株产量具有较高的一般配合力, 其效应值分别为 8.313 5、4.831 9, 在自交系的改良、高产杂交种选配等育种工作中具有一定的利用潜力, 是较好的基础育种材料。同时自交系 CML522、CLYN492 分别与测验种 18599、绵 723 组配也表现出较好的

特殊配合力,其中 18599×CLYN492 的产量水平超过对照 11.34%,绵 723×CML522 的产量水平超过对照 5.19%,可以 作为高产杂交种的组配模式。下一步育种工作中可针对 2 个自交系进行定向改良,如改良 CML522 秃尖过长、CLYN492 生育期偏长等缺陷,为下一轮优良玉米新品种选育提供种质基础。

参考文献

- [1] 番兴明, 谭静, 杨峻芸. 热带、亚热带外来玉米种质的利用[J]. 西南农业学报, 2000, 13(1): 107-111.
- [2] 李娟,陈泽辉,祝云芳,等. 美国先锋玉米杂交种选系的配合力[J]. 贵州农业科学,2011,39(9);5-8.
- [3] 荀才明,黄宁,余世权,等. 17 个玉米地方种质选系的杂优类群分析 [J]. 核农学报,2015,29(5):821-829.
- [4] 王安贵,陈泽辉,祝云芳,等. 玉米 Suwan 选系杂种优势利用模式研究 [J]. 贵州农业科学,2008,36(3):7-9.
- [5] 王永学,季洪强,张战辉,等.5个含热带血缘玉米骨干自交系产量性状的杂种优势与配合力效应[J].河南农业大学学报,2011,45(4):377-382
- [6] 田树云,文仁来,苏月贵,等. 12 个泰国玉米群体的产量配合力效应分析及其杂种优势类群的划分[J]. 玉米科学,2012,20(5):1-6.
- [7] 沈建华,任洪,徐如宏,等. Suwan 种质玉米自交系的配合力分析[J]. 贵州农业科学,2012,40(4):14-16.
- [8] 郭向阳,坞成,陈泽辉,等. 玉米 Suwan-Lancaster 和 Tuxpeno-Reid 改良 系的产量及相关性状配合力分析[J]. 西南农业学报,2016,29(12): 2796-2799.
- [9] 王秀全,张华,何丹,等. 大刍草血缘普通玉米自交系的配合力分析 [1]. 西南科技大学学报,2013,28(4):102-107.
- [10] 秦燕,杨洪,赵永康,等.16个新选玉米自交系主要性状的配合力分析 [J].安徽农业科学,2017,45(31):31-33.