草铵膦对蔬菜田 4 种杂草的防效

兰亦全,吴小芳 (福建农林大学植物保护学院,福建福州 350002)

摘要 为明确 200 g/L 草铵膦水剂对蔬菜田主要杂草的防效,采用茎叶喷雾法进行田间药效试验。结果表明,200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm²处理药后 15 和 30 d 对蔬菜田马唐、小飞蓬、牛筋草和马齿苋 4 种杂草的防效均在 90%以上,各处理药后 15 d 的防效与 200 g/L 百草枯水剂 4 500 mL/hm²处理的防效差异不显著,但药后 30 d 的防效显著高于百草枯。200 g/L 草铵膦水剂可有效 防除蔬菜田马唐、小飞蓬、牛筋草和马齿苋、持效期达 30 d 以上。

关键词 草铵膦;蔬菜田;杂草;防效

中图分类号 S451.2 文献标识码 A 文章编号 0517-6611(2021)02-0123-02

doi: 10.3969/j.issn.0517-6611.2021.02.033

开放科学(资源服务)标识码(OSID): 🖺

(OSID) :

Control Effect of Glufosinate-ammonium against Four Kinds of Weeds in Vegetable Fields

LAN Yi-quan, WU Xiao-fang (College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002)

Abstract The field efficacy trials were carried out by the foliage spraying method to determine the control effect of 200 g/L glufosinate-ammonium AS against main weeds in vegetable fields. At the 15th and 30th day after application, the control effect of 200 g/L glufosinate-ammonium AS against four kinds of weeds (*Digitaria sanguinalis*, *Comnyza Canadensis*, *Eleusine indica* and *Portulaca oleracea*) was more than 90% at the dosage of 3 750, 4 500 and 5 250 mL/hm², respectively. There was no significant difference in the control effect between 200 g/L glufosinate-ammonium AS and 200 g/L paraquat AS at the 15th day after application. The control effect of glufosinate-ammonium was significantly higher than that of paraquat at the 30th day after application. Glufosinate-ammonium can effectively control *Digitaria sanguinalis*, *Comnyza Canadensis*, *Eleusine indica* and *Portulaca oleracea* in vegetable fields for more than 30 days.

Key words Glufosinate-ammonium; Vegetable field; Weed; Control effect

蔬菜是人们日常饮食中必不可少的食物之一,可提供人体所需的多种维生素和矿物质等营养物质,因此蔬菜的种植和供应对于国民健康的保障具有重要意义。但在蔬菜田间种植中往往伴随着杂草的发生和危害。蔬菜田杂草的滋生不仅可与蔬菜竞争水、肥、光能,增加管理用工和生产成本,而且有些杂草还是病虫害的中间寄主,严重影响蔬菜的产量和品质。化学除草因具有高效、快速、经济等优点,已成为农业现代化及农业高产、稳产的一项先进技术。

草铵膦是德国赫斯特公司于 20 世纪 80 年代开发的一种有机磷类灭生性触杀型的茎叶处理剂,具有除草活性高、毒性低、环境兼容性好等特点^[1],可用于果园、葡萄园、非耕地等防除一年生和多年生双子叶及单子叶杂草^[2]。该药剂是谷氨酰胺合成酶抑制剂,可导致植物体内氮代谢紊乱,铵过量积累,从而引起叶绿体解体、光合作用受到抑制,最终导致植物死亡^[3-4]。

近年来,随着草甘膦大量使用而造成抗性杂草蔓延^[5-7],以及百草枯水剂的禁用,草铵膦的用量呈逐年上升趋势,已成为菜田清园中最为依赖的除草剂品种^[8]。目前,国内对于草铵膦的应用研究主要集中于果园、非耕地除草^[9-11],对于该药剂在蔬菜田的除草效果研究较少。为此,笔者进行了200 g/L 草铵膦水剂对蔬菜田马唐、小飞蓬、牛筋草和马齿苋4种主要杂草的药效试验,以明确该药剂对蔬菜田杂草的防效,为其推广应用提供理论依据。

1 材料与方法

1.1 试验药剂 200 g/L 草铵膦水剂(河北威远生物化工股

基金项目 福建农林大学科技创新专项基金项目(CXZX2017213)。 作者简介 兰亦全(1972—),男,福建霞浦人,副教授,博士,从事植物 化学保护研究。

收稿日期 2020-06-13

份有限公司);200 g/L 百草枯水剂(先正达南通作物保护有限公司)。

- 1.2 试验地概况 试验地设在福建省漳州市南靖县靖城镇 大房村,试验地长期种植蔬菜,试验时正处于休耕期,试验前 后未施用过其他除草剂。土壤为黏土,土层深厚,肥力良好。 试验地杂草生长均匀一致,主要杂草为马唐(Digitaria sanguinalis)、小飞蓬(Comnyza canadensis)、牛筋草(Eleusine indica)、马齿苋(Portulaca oleracea)等。试验时杂草处于营养生 长感期。
- 1.3 试验设计 试验共设 5 个处理,分别为 200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm²; 200 g/L 百草枯水剂 4 500 mL/hm²;清水对照。每处理 4 次重复,小区面积30 m²,随机区组排列。在杂草生长旺盛期,采用背负式电动喷雾器对准杂草茎叶进行喷雾,喷施的药液量为450 L/hm²。施药当日天气晴好,日气温 $16\sim32~^{\circ}$ 0、相对湿度 72%,药后 15 d内无降雨。
- 1.4 **药效调查方法** 施药前调查各小区杂草的基数,每个小区随机选择5个点,每点调查1 m²,施药后15、30 d采用相同方法调查各小区存活杂草的株数,计算防效。防效按下式计算:

防效= $\left[1-\left(T_a \times C_b\right)/\left(T_b \times C_a\right)\right] \times 100\%$

式中, T_a 为处理区防治后的株数, T_b 为处理区防治前的株数, C_a 为对照区防治后的株数, C_b 为对照区防治前的株数。

- **1.5 数据分析** 运用 DPS 软件进行数据处理与分析,差异显著性检验采用邓肯氏新复极差法(*P*<0.05)。
- 2 结果与分析
- **2.1 草铵膦对马唐的防效** 从表 1 可以看出,施药后 15 d, 200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm² 处理对马唐

的防效分别为91.73%、93.58%、96.87%,与200 g/L 百草枯水剂4500 mL/hm²处理的防效差异均不显著。施药后30d,草铵膦水剂3个处理对马唐的防效分别达94.66%、96.24%、98.85%,均显著高于百草枯水剂4500 mL/hm²处理的防效。草铵膦水剂对马唐的防效随着用量的增加而提高,但各处理之间差异不显著。

表 1 200 g/L 草铵膦水剂对马唐的防效

Table 1 Control effect of 200 g/L glufosinate-ammonium AS against

Digitaria sanguinalis %

序号 No.	处理 Treatment	药后 15 d Control effect on the 15th day after treatment	药后 30 d Control effect on the 30th day after treatment
1	200 g/L 草铵膦水剂 3 750 mL/hm²	91.73 a	94.66 a
2	200 g/L 草铵膦水剂 4 500 mL/hm²	93.58 a	96.24 a
3	200 g/L 草铵膦水剂 5 250 mL/hm²	96.87 a	98.85 a
4	200 g/L 百草枯水剂 4 500 mL/hm²	94.23 a	84.25 b

注:同列数据后不同小写字母表示不同处理间差异达显著水平(P<0.05)

Note: Different lowercase letters in the same column indicated significant difference between different treatments at 0.05 level

2.2 草铵膦对小飞蓬的防效 从表 2 可以看出,施药后 15 d,200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm²处理对 小飞蓬的防效分别为 93.74%、95.83%、97.59%,与 200 g/L 百草枯水剂 4 500 mL/hm² 处理的防效均无显著差异。施药后 30 d,草铵膦水剂 3 个处理对小飞蓬的防效分别达 95.29%、97.73%、99.54%,均显著高于百草枯水剂 4 500 mL/hm²处理的防效。草铵膦水剂对小飞蓬的防效随着用量的增加而提高,但各处理之间无显著差异。

表 2 200 g/L 草铵膦水剂对小飞蓬的防效

Table 2 Control effect of 200 g/L glufosinate-ammonium AS against Comnyza canadensis %

序号 No.	处理 Treatment	药后 15 d Control effect on the 15th day after treatment	药后 30 d Control effect on the 30th day after treatment
1	200 g/L 草铵膦水剂 3 750 mL/hm²	93.74 a	95.29 a
2	200 g/L 草铵膦水剂 4 500 mL/hm²	95.83 a	97.73 a
3	200 g/L 草铵膦水剂 5 250 mL/hm²	97.59 a	99.54 a
4	200 g/L 百草枯水剂 4 500 mL/hm²	96.08 a	85.02 b

注:同列数据后不同小写字母表示不同处理间差异达显著水平(P<0.05)

Note: Different lowercase letters in the same column indicated significant difference between different treatments at 0.05 level

2.3 草铵膦对牛筋草的防效 从表 3 可以看出,施药后 15 d,200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm²处理对 牛筋草的防效分别为 91.73%、93.65%、95.08%,与 200 g/L 百草枯水剂 4 500 mL/hm²处理的防效差异均不显著。施药后 30 d,草铵膦水剂 3 个处理对牛筋草的防效分别达 93.26%、95.86%、97.82%,均显著高于百草枯水剂 4 500 mL/hm²处理的防效。草铵膦水剂对牛筋草的防效随着用量的增加而提高,但各处理之间差异不显著。

表 3 200 g/L 草铵膦水剂对牛筋草的防效

Table 3 Control effect of 200 g/L glufosinate-ammonium AS against

序号 No.	处理 Treatment	药后 15 d Control effect on the 15th day after treatment	药后 30 d Control effect on the 30th day after treatment
1	200 g/L 草铵膦水剂 3 750 mL/hm²	91.73 a	93.26 a
2	200 g/L 草铵膦水剂 4 500 mL/hm²	93.65 a	95.86 a
3	200 g/L 草铵膦水剂 5 250 mL/hm²	95.08 a	97.82 a
4	200 g/L 百草枯水剂 4 500 mL/hm²	92.16 a	80.45 b

注:同列数据后不同小写字母表示不同处理间差异达显著水平(P<0.05)

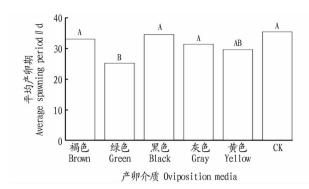
Note: Different lowercase letters in the same column indicated significant difference between different treatments at 0.05 level

2.4 草铵膦对马齿苋的防效 从表 4 可以看出,施药后 15 d,200 g/L 草铵膦水剂 3 750、4 500、5 250 mL/hm² 处理对 马齿苋的防效分别为 90.67%、91.56%、94.07%,与 200 g/L 百 草枯水剂 4 500 mL/hm² 处理的防效均无显著差异。施药后 30 d,草铵膦水剂 3 个处理对马齿苋的防效分别达 93. 28%、95.44%、96.87%,均显著高于百草枯水剂 4 500 mL/hm² 处理的防效。草铵膦水剂对马齿苋的防效随着用量的增加而提高,但各处理之间无显著差异。

表 4 200 g/L 草铵膦水剂对马齿苋的防效

Table 4 Control effect of 200 g/L glufosinate-ammonium AS against

Portulaca oleracea %


序号 No.	处理 Treatment	药后 15 d Control effect on the 15th day after treatment	药后 30 d Control effect on the 30th day after treatment
1	200 g/L 草铵膦水剂 3 750 mL/hm²	90.67 a	93.28 a
2	200 g/L 草铵膦水剂 4 500 mL/hm²	91.56 a	95.44 a
3	200 g/L 草铵膦水剂 5 250 mL/hm²	94.07 a	96.87 a
4	200 g/L 百草枯水剂 4 500 mL/hm²	94.85 a	82.58 b

注:同列数据后不同小写字母表示不同处理间差异达显著水平(P<0.05)

Note: Different lowercase letters in the same column indicated significant difference between different treatments at 0.05 level

3 讨论

该试验结果表明,200 g/L 草铵 膦水剂 3 750~5 250 mL/hm²处理对蔬菜田马唐、小飞蓬、牛筋草和马齿苋 4 种主要杂草均具有优良的防效,且防效随着用量的增加而提高。药后 15 和 30 d,200 g/L 草铵膦水剂各处理对马唐、小飞蓬、牛筋草和马齿苋的防效均达 90%以上。欧阳主才等[12] 研究表明,200 g/L 草铵 膦可溶性液剂 2 250~3 750 g/hm²茎叶喷雾能够高效防除番茄地禾本科、菊科、苋科和十字花科的绝大部分杂草,且持效期可达 30 d以上。从杀草速度看,草铵膦的杀草速度比百草枯慢,施药后 5 d 左右杂草开始出现中毒死亡现象,施药后 10 d 左右为杂草死亡高峰期,但其持效期比百草枯长,药后 30 d 各处理的防效均显著高于百草枯水剂 4 500 mL/hm² 处理的防效。

注:不同大写字母表示不同颜色产卵介质间差异显著(P<0.01)
Note: Different capital letters indicated significant difference between different color oviposition media at 0.01 level

图 1 不同颜色产卵介质对蠋蝽产卵期的影响

Fig. 1 Effects of different color oviposition media on Arma chinensis (Fallou) during oviposition period

参考文献

- [1] 高卓,王晳玮,张李香,等蠋蝽(Arma chinensis)生物学特性研究[J].黑 龙江大学工程学报,2011,2(4):72-77,83.
- [2] 邹德玉,徐维红,刘佰明,等.天敌昆虫蠋蝽的研究进展与展望[J].环境 昆虫学报,2016,38(4):857-865.
- [3] 姜秀华,王金红,李振刚.蠋敌生物学特性及其捕食量的试验研究[J]. 河北林业科技,2003(3):7-8.
- [4] 邢雪松,周义,刘君,等.一种新型天敌昆虫蠋蝽在林业上的应用[J].北京园林,2018,34(3):48-50.

- [5] 高卓,张李香,王贵强,保护利用蠋蝽防治甜菜害虫[J].中国糖料,2009, 31(1):70-72.
- [6] 王文亮,刘芹,闫家河,等,美国白蛾新天敌——蠋敌捕食能力的初步观察[J].山东林业科技,2012,42(1):11-14.
- [7] 唐艺婷,李玉艳,刘晨曦,等,蠋蝽对草地贪夜蛾的捕食能力评价和捕食 行为观察[J].植物保护,2019,45(4):65-68.
- [8] 杨志浩,孟玲,李保平.虫龄对蠋蝽捕食斜纹夜蛾幼虫行为参数的影响 [J].生态学杂志,2019,38(11):3376-3381.
- [J].生态学杂志,2019,38(11);3376-3381. [9] 李婷,张晓军,张健,等.我国榆紫叶甲防治的研究进展[J].北方园艺, 2015(22);195-198.
- [10] 孟繁君,张大明,宋丽文,等,榆紫叶甲生物学特性及其防治技术[J]. 林业科技,2009,34(3):33-34.
- [11] 张晓军,张健,孙守慧.蠋蝽对榆紫叶甲的捕食作用[J].中国森林病虫,2016,35(1):13-15,30..
- [12] 赵萍,万人静,刘红霞.贵州省益蝽亚科(异翅亚目:蝽科)昆虫记述 [J] 凯里学院学报,2016,34(6):76-80.
- [13] RIDER D A, ZHENG L Y.Checklist and nomenclatural notes on the Chinese Pentatomidae (Heteroptera) I.Asopinae [J]. Entomotaxonomia, 2002, 24(2):107-115.
- [14] 张贺贺,陈家骅,季清娥,等,影响昆虫产卵行为的因素及其应用研究概述[J].环境昆虫学报,2015,37(2):432-440.
- [15] 任荔荔,祁力言,蒋巧根,等植物果实、颜色和形状对橘小实蝇产卵选择的影响[J].昆虫知识,2008,45(4):593-597.
- [16] KEESEY I W, KNADEN M, HANSSON B S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit[J]. Journal of chemical ecology, 2015, 41(2):121-128.
- [17] 潘明真,张海平,张长华,等.饲养密度和性比对蠋蝽存活和繁殖生物学特性的影响[J].中国生物防治学报,2018,34(1):52-58.
- [18] 王甦,刘爽,张帆,等环境颜色对异色瓢虫生长发育及繁殖能力的影响[J].昆虫学报,2008,51(12):1320-1326.
- [19] 肖达,郭晓军,张帆,等.环境颜色对七星瓢虫产卵的影响[J].中国生物防治学报,2017,33(1):44-48.

(上接第124页)

200 g/L 草铵膦水剂用于防除蔬菜田马唐、小飞蓬、牛筋草和马齿苋时,建议使用剂量为 3 750~5 250 mL/hm²,在杂草营养生长盛期进行茎叶喷雾。因草铵膦的除草活性与温度、湿度、光强等环境因素关系密切^[3],在实际应用时可根据气候环境条件适当调整用量。施药时应尽量避免药液漂移造成邻近作物药害。此外,由于不同蔬菜田杂草群落和杂草种类差异较大,该试验仅涉及 200 g/L 草铵膦水剂对蔬菜田马唐、小飞蓬、牛筋草和马齿苋 4 种主要杂草的防效,该药剂对蔬菜田其他杂草的防效有待进一步试验。

参考文献

- [1] 凌进.草铵膦.百草枯、草甘膦对非耕地杂草的防效比较[J].农药,2014,53(8):613-615.
- [2] 农业部种植业管理司,农业部农药检定所.新编农药手册[M].2版.北京:中国农业出版社,2013;489.

- [3] 张宏军,刘学,张佳,等.草铵膦的作用机理及其应用[J].农药科学与管理,2004,25(4):23-27.
- [4] 苏少泉.草铵膦述评[J].农药,2005,44(12):529-532.
- [5] 李玉,宗涛,杨浩娜,等.长江中下游棉田马唐(Digitaria sanguinalis)对草甘膦的抗药性初步研究[J].棉花学报,2016,28(3);300-306.
- [6] 胡芳,董慧荣,沈雪峰,等.牛筋草对百草枯、草甘膦和草铵膦的抗药性水平测定[J].西南农业学报,2018,31(2):335-341.
- [7] 周欣欣,黄兆峰,魏守辉,等.杂草对草甘膦抗性机制及治理对策[J].农 药科学与管理,2018,39(5):39-45.
- 约科字与管理,2018,39(5):39-45. [8] 郭文磊,冯莉,张泰劼,等植保无人机喷施草铵膦在叶菜田清园灭茬中
- 的效果[J].杂草学报,2018,36(3):29-34. [9] 蒲占湑,黄振东,胡秀荣,等.草铵膦对柑橘园杂草的防效及安全性研究
- [J].浙江柑橘,2017,34(3):26-28. [10] 余永志,吴文进.200 g/L 草铵膦水剂对桃园杂草的防效研究[J].现代农业科技,2013(21):138-139.
- [11] 余晓云,石岩.灭生性除草剂草铵膦的应用研究[J].耕作与栽培,2016 (1):69-72.
- [12] 欧阳主才,崔海兰,陈勇,等.200 g/L 草铵膦可溶性液剂防除番茄田杂草药效试验[J].安徽农业科学,2008,36(30):13259-13260.