蓝莓汁酶法提取工艺研究

胡军1.罗刚华1.曹敬华2*

(1. 湖北紫鑫生物科技有限公司, 湖北黄石 435000; 2. 湖北工业大学生物工程与食品学院, 湖北武汉 430068)

摘要 以蓝莓为原料,通过单因素试验和正交试验,对蓝莓汁提取工艺进行优化。结果表明,蓝莓汁的最佳提取工艺条件为超声功率 200 W、超声时间 30 min、果胶酶添加量 0.25%、酶解温度 45 ℃、酶解时间 120 min,在此条件下蓝莓出汁率可达 70.2%。

关键词 蓝莓;蓝莓汁;酶解;出汁率

中图分类号 TS 255 文献标识码 A 文章编号 0517-6611(2021)04-0160-03 **doi**;10.3969/j.issn.0517-6611.2021.04.044

开放科学(资源服务)标识码(OSID):

Study on Enzymatic Extraction Process of Blueberry Juice

HU Jun¹, LUO Gang-hua¹, CAO Jing-hua² (1.Hubei Zixin Biotechnology Co., Ltd., Huangshi, Hubei 435000; 2.College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068)

Abstract The extraction technology of blueberry juice was optimized by single factor and orthogonal experiment. The results showed that the optimum enzymolysis extraction process conditions of blueberry juice were as follows: ultrasonic power 200 W, ultrasonic time 30 min, pectinase addition 0.25%, enzymolysis temperature 45 °C, enzymolysis time 120 min. Under the optimum extraction process conditions, the juice yield of blueberry was 70.2%.

Key words Blueberry; Blueberry juice; Enzymolysis; Juice yield

蓝莓属于杜鹃花科越橘属植物^[1],富含糖类、氨基酸、维生素 C、磷、钙、有机酸^[2-3],果实酸甜可口,可用于鲜食;由于果实中还含有大量的花青素,其具有抗自由基、抗视力退化、抗动脉硬化和血栓形成的作用^[4-6],是非常理想的抗氧化食品,既可以将蓝莓作为原料提取花青素用于药品、保健品等领域,也可将蓝莓加工成果脯、果酱、果酒、果汁等各类产品^[7]。

富色食品是一系列色彩鲜艳的速溶果蔬汁(粉)^[8],既能作为食品原料,又能起到良好的着色效果。蓝莓既含有丰富的花青素,又具有天然蓝色,是十分理想的富色食品生产原料,为了最大程度地保留蓝莓原料中的营养成分,生产过程中不采用有机溶剂提取等工艺。该研究利用超声结合酶解法,选择单因素及正交试验分析方法,研究超声功率、超声时间、酶用量、酶解温度、酶解时间对出汁率的影响,优化得到最佳的蓝莓汁提取工艺,以期为开发蓝莓富色食品提供前期研究基础。

1 材料与方法

- **1.1** 材料与试剂 蓝莓,市售;果胶酶(30 000 U/g),北京盛世嘉明科技开发有限公司。
- 1.2 仪器与设备 AR1140 电子分析天平,奥克斯国际贸易有限公司; DK-80 数显恒温水浴锅,常州诺基仪器有限公司; SBL-72DT 恒温超声波清洗机,宁波新芝生物科技股份有限公司; SJYZ10-200 榨汁机,浙江绍兴苏泊尔生活电器有限公司。

1.3 方法

- 1.3.1 工艺流程。蓝莓汁酶法提取工艺见图 1。
- **1.3.2** 酶解工艺优化单因素试验。以出汁率为评价指标,分别考察超声功率(50、100、150、200、250 W)、超声时间(10、

基金项目 湖北省技术创新专项重大项目(2019ABA094)。

作者简介 胡军(1969—),男,湖北武穴人,高级工程师,从事生物提取 研究。*通信作者,工程师,硕士,从事食品发酵研究。

收稿日期 2020-06-30

20,30,40,50 min)、果胶酶添加量(0.05%、0.10%、0.15%、0.20%、0.25%)、酶解温度(40、45、50、55、60 °C)、酶解时间(60、90、120、150、180 min)对蓝莓出汁率的影响。

新鲜蓝莓→挑除烂果→清洗→打浆→超声处理→酶解→压榨、过滤

图 1 工艺流程[9]

Fig.1 Process flow

1.3.3 酶解工艺优化正交试验。在单因素试验的基础上,以超声时间(A)、果胶酶添加量(B)、酶解温度(C)、酶解时间(D)为影响因素,以出汁率为评价指标,采用 L₉(3⁴)正交试验对蓝莓酶解工艺进行优化,正交试验因素与水平见表 1。

表 1 酶解工艺优化正交试验因素与水平

Table 1 Factors and levels of orthogonal experiments for enzymatic hydrolysis process optimization

水平 Level	A 超声时间 Ultrasonic time//min	B 果胶酶添加量 Pectinase addition//% t	C 酶解温度 Enzymolysis temperature //℃	D 酶解时间 Enzymolysis time//min
1	20	0.15	45	90
2	30	0.20	50	120
3	40	0.25	55	150

1.3.4 出汁率测定。出汁率计算公式如下:

$$C = \frac{M_1}{M_2} \times 100\%$$

式中,C 为出汁率(%); M_1 为酶解后澄清汁取上清液的质量(g); M_2 为酶解前蓝莓果浆的质量(g)。

1.3.5 数据处理方法。所有数据均取 3 次重复试验的平均值,利用 Design-Expert 8.0.6 统计软件进行统计分析。

2 结果与分析

2.1 单因素试验结果

2.1.1 超声功率对蓝莓出汁率的影响。在超声 30 min、果胶酶添加量 0.15%、酶解温度 45 ℃、酶解 120 min 条件下,考察

超声功率对蓝莓出汁率的影响。蓝莓破碎后用超声处理,超声波在液体中发生空化现象并产生真空小气泡,其破裂时可引发强烈的冲击波和剪切力^[10],将蓝莓纤维材质分解和细胞破碎,使可溶性物质快速溶解并释放到液体中。从图 2 可看出,随着超声功率的增加,蓝莓出汁率也增加,在超声功率为 200 W 时,出汁率最高可达 64.8%,超声功率继续增大,但出汁率开始下降,分析原因可能是当超声功率过大时,空化产生的气泡过大,在声波的压缩相内来不及发生崩溃,无法引发剧烈的冲击波而导致空化效果不理想,影响了蓝莓出汁。此外,过大的超声功率使得体系温度迅速升高,容易导致花青素等功能成分降解^[11]。因此,超声功率选择 200 W。

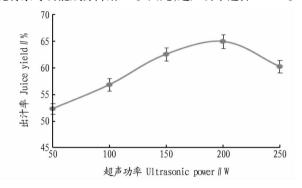


图 2 超声功率对蓝莓出汁率的影响

Fig.2 The effect of ultrasonic power on the juice yield of blueberry

2.1.2 超声时间对蓝莓出汁率的影响。在超声功率 200 W、果胶酶添加量 0.15%、酶解温度 45 ℃、酶解 120 min 条件下,考察超声时间对蓝莓出汁率的影响。由图 3 可知,随着超声时间的增加,蓝莓出汁率逐渐提高,超声 30 min 时,出汁率最高达 66.2%;继续延长超声时间,出汁率出现下降趋势,可能是超声时间过长导致体系温度上升,一些水分蒸发反而降低了出汁率,但相比 10 和 20 min 的超声时间,出汁率相对较高。综合考虑,选择超声时间 30 min。

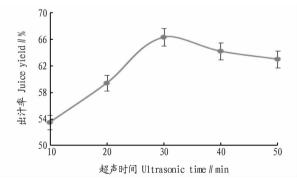


图 3 超声时间对蓝莓出汁率的影响

Fig.3 The effect of ultrasonic time on the juice yield of blueberry

2.1.3 果胶酶添加量对蓝莓出汁率的影响。在超声功率200 W、超声时间30 min、酶解温度45 ℃、酶解120 min 条件下,考察果胶酶添加量对蓝莓出汁率的影响。由图4可知,蓝莓出汁率随着果胶酶用量的增加而提高,当果胶酶添加量超过0.20%之后,增加幅度极小,继续增加果胶酶用量主要是加快了酶解速度,但不能显著提高出汁率,因此选择果胶

酶添加量为 0.20%。

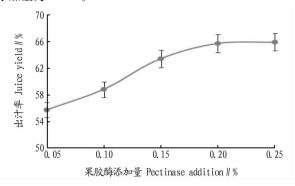


图 4 果胶酶添加量对蓝莓出汁率的影响

Fig.4 The effect of pectinase addition on the juice yield of blueberry

2.1.4 酶解温度对蓝莓出汁率的影响。在超声功率 200 W、超声时间 30 min、果胶酶添加量 0.20%、酶解 120 min 条件下,考察酶解温度对蓝莓出汁率的影响。由图 5 可知,蓝莓出汁率随着酶解温度的增大呈现先提高后下降的趋势。当酶解温度超过 50 ℃后,由于过高的温度可导致果胶酶逐渐钝化而失活,酶解反应和效率快速降低,从而使蓝莓出汁率有所下降。因此、选择酶解温度为 50 ℃。

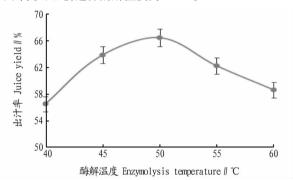


图 5 酶解温度对蓝莓出汁率的影响

Fig.5 The effect of enzymolysis temperature on the juice yield of blueberry

- 2.1.5 酶解时间对蓝莓出汁率的影响。在超声功率 200 W、超声时间 30 min、果胶酶添加量 0.20%、酶解温度 50 ℃条件下,考察酶解时间对蓝莓出汁率的影响。由图 6 可知,在酶解时间 60~120 min 内,蓝莓出汁率逐渐升高;继续酶解,出汁率略有下降,与酶解 120 min 差距不大。考虑到长时间酶解不利于果汁的口感和营养保留^[12],以及时间成本过高,选择酶解时间为 120 min。
- 2.2 正交试验结果及方差分析 在单因素试验的基础上,对超声时间(A)、果胶酶添加量(B)、酶解温度(C)、酶解时间(D)进行 4 因素 3 水平的正交试验优化。由表 2 可知,对蓝莓出汁率影响的大小顺序为酶解温度>果胶酶添加量>超声时间>酶解时间。酶法提取的最佳工艺条件组合为 $A_2B_3C_1D_2$,即超声时间 30 min、果胶酶添加量 0.25%、酶解温度 45 $^{\circ}$ C、酶解时间 120 min。方差分析可知,酶解温度和果胶酶添加量对出汁率的影响均为极显著。在此工艺条件下,进行蓝莓汁酶法提取

最优工艺的验证试验,出汁率为70.2%。

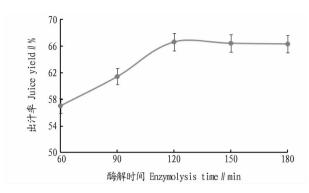


图 6 酶解时间对蓝莓出汁率的影响

Fig.6 The effect of enzymolysis temperature on the juice yield of blueberry

表 2 正交试验结果与分析

Table 2 Results and analysis of orthogonal experiments

试验号 Test No.	A	В	C	D	出汁率 Juice yield//%
1	1	1	1	1	64.2
2	1	2	2	2	66.6
3	1	3	3	3	54.3
4	2	1	2	3	62.5
5	2	2	3	1	46.4
6	2	3	1	2	70.1
7	3	1	3	2	43.9
8	3	2	1	3	59.3
9	3	3	2	1	67.5
$\overline{k_1}$	61.700	56.867	64.533	59.367	
k_2	59.667	57.433	65.533	60.200	
k_3	56.900	63.967	48.200	58.700	
R	4.800	7.100	17.333	1.500	

(上接第135页)

3 结论与讨论

20%咯菌腈·精甲霜灵·噻虫嗪 FS 是防治水稻稻蓟马和恶苗病的良好药剂,也具有较好的持效性,可以起到一定的壮苗作用。

防治稻蓟马使用 20% 咯菌腈·精甲霜灵·噻虫嗪 FS 2.50、5.00 g/kg(种子)处理与 70%噻虫嗪 WS 2.00 g/kg(种子)处理防治效果相当,比 600 g/L 吡虫啉 FS 3 g/kg(种子)处理具有明显优势。目前,常德市中晚稻秧田不仅受稻蓟马危害,也有飞虱、叶蝉的混合发生,付佑胜等^[10]报道含噻虫嗪成分的药剂对这些害虫具有一定兼治效果。使用 20%咯菌腈·精甲霜灵·噻虫嗪 FS 2.50、5.00 g/kg(种子),对恶苗病的防效可达 91%以上,与25 g/L咯菌腈 FS 5.00 g/kg(种子)、62.5 g/L精甲·咯菌腈 FS 3.50 g/kg(种子)防效相当。

综上所述,20%咯菌腈・精甲霜灵・噻虫嗪 FS 防治稻 蓟马和恶苗病适宜使用 2.50~5.00 g/kg(种子) 在水稻浸种

3 结论

通过单因素试验和正交试验对蓝莓汁酶法提取工艺进行优化,确定其最优工艺为超声功率 200 W、超声时间 30 min、果胶酶添加量 0.25%、酶解温度 45 ℃、酶解时间 120 min。在此条件下蓝莓出汁率可达 70.2%。

参考文献

- [1] 汪晓琳,谷绒,胡晓涛,等.蓝莓汁复合酶法制取工艺的优化研究[J].保鲜与加工,2017,17(6):71-77.
- [2] REQUE P M, STECKERT E V, DOS SANTOS F T, et al. Heat processing of blueberries and its effect on their physicochemical and bioactive properties [J], Journal of food process engineering, 2016, 39(6):564–572.
- [3]周理红.蓝莓花青素的抗氧化活性对比及其稳定性分析[J]现代食品科技,2020,36(3):65-71.
- [4] 陈亮,辛秀兰,王晓杰,等野生蓝莓果渣中花色苷提取工艺研究[J].食品研究与开发,2016,37(1):52-56.
- [5] BEAULIEU J C, STEIN-CHISHOLM R E, LLOYD S W, et al. Volatile, anthocyanidin, quality and sensory changes in rabbiteye blueberry from whole fruit through pilot plant juice processing [J]. Journal of the science of food & agriculture, 2017, 97(2):469-478.
- [6] 吕芳楠,温靖,徐玉娟,等.蓝莓果实的营养价值和药理作用及其加工利用[J].安徽农业科学,2016,44(18):85-87.
- [7] 贾鸿冰,田继远,于娟复合果胶酶酶解对蓝莓出汁率和花色苷溶出量的影响[J].食品科技,2016,41(6):270-274.
- [8] 中国食品工业协会.食品工业用富色食品:T/CNFIA 101—2017[S].北京:中国质检出版社,2018.
- [9] 程红, 隋秀芳. 酶解法提取蓝莓果汁的研究[J]. 中国酿造, 2017, 36(4): 153-157.
- [10] 朱玲,张晓利,游新侠.超声波辅助提取火龙果皮中的果胶[J].饮料工业,2020,23(2):36-39.
- [11] 楚文靖,叶双双,张付龙,等.超声处理对蓝莓汁杀菌效果和品质的影响[J].食品与发酵工业,2020,46(13):203-208.
- [12] 刘刚,马岩,孟宪军,等.响应面法优化酶法提取蓝莓果汁工艺条件 [J].食品科学,2013,34(14):68-72.

催芽至露白后拌种,待晾干后再播种。

参考文献

- [1] 方海维,倪社教,张国友,等.沿江地区稻蓟马重发原因浅析[J].安徽农业科学,2004,32(1):58.
- [2] 李艳梅.不同种子处理剂对水稻秧苗素质及恶苗病防效比较[J].现代 农药,2018,17(6):54-56.
- [3] 伏荣桃,陈诚,王剑,等,浅淡水稻种子处理技术防治病虫害[J].四川农业科技,2018(5):34-35.
- [4] 关学文,张帮林.24%苯醚·咯·噻虫悬浮种衣剂防治水稻恶苗病田间 药效试验[J].现代农业科技,2020(9):91,94.
- [5] 吉沐祥,杨红福,姚友华,等.江苏省水稻种子处理剂利用现状与使用技术[J].江苏农业科学,2006,34(2):8-10.
- [6] 陈轶.药剂拌种对水稻中前期病虫的控害作用[J].浙江农业科学,2011,52(3):642-643.
- [7] 丁灵伟,陈将赞,戴以太,等 噻虫嗪种子处理对水稻蓟马的防治效果 [J] 浙江农业科学,2013,54(11):1440-1441.
- [8] 周宇杰,徐越坚,卢春燕、噻虫嗪 FS 对促进晚稻秧苗生长与防治稻蓟马的效果研究[J].湖南农业科学,2014(5):34-36.
- [9] 唐涛,刘都才,刘雪源,等噻虫嗪种子处理防治水稻蓟马及其对秧苗生长的影响[J].中国农学通报,2014,30(16):299-305.
- [10] 付佑胜,赵桂东,刘伟中.70%噻虫嗪 WS 对水稻壮苗及稻飞虱的防治效果[J].南方农业学报,2012,43(4):454-457.