液相色谱-串联质谱法测定三文鱼中生物胺的不确定度分析

郑越男1,曹进2*,孙珊珊2,郭亚辉1,罗娇依2,钱和1

(1. 江南大学食品科学与技术国家重点实验室,江苏无锡 214122;2. 中国食品药品检定研究院,北京 100050)

摘要 [目的]评定液相色谱-串联质谱法测定三文鱼中生物胺的不确定度。[方法]样品经过5%三氯乙酸提取、正已烷除脂、丹磺酰氯丙酮溶液衍生化后,液相色谱-串联质谱分析三文鱼中9种生物胺的含量,对方法相对标准不确定度、标准不确定度、扩展不确定度进行评估。[结果]色胺、 β -苯乙胺、腐胺、尸胺、酪胺、组胺、精胺、亚精胺、去甲基肾上腺素的平均值分别为4.30、5.59、5.72、6.21、4.85、5.48、7.18、6.79、4.77 mg/kg,扩展不确定度分别为0.46、0.56、0.48、0.54、0.42、0.50、0.64、0.55、0.41 mg/kg(k=2)。[结论]标准储备液的配制、稀释以及标准曲线的线性拟合对不确定度的贡献值最大、建议选用精度好的量器,规范试验操作与前处理步骤。

关键词 三文鱼;生物胺;液相色谱-串联质谱;不确定度

中图分类号 TS 254.7 文献标识码 A 文章编号 0517-6611(2021)17-0189-06 **doi**;10.3969/j.issn.0517-6611.2021.17.050

开放科学(资源服务)标识码(OSID): 🖥

Evaluation of Uncertainty in Determination of Biogenic Amines in Salmon by Liquid Chromatography Tandem Mass Spectrometry ZHENG Yue-nan¹, CAO Jin², SUN Shan-shan² et al (1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122;2. National Institutes for Food and Drug Control, Beijing 100050)

Abstract [Objective] To evaluate the uncertainty of determination of biogenic amines in salmon by liquid chromatography tandem mass spectrometry. [Method] The samples were extracted with 5% trichloroacetic acid, defatted with n-hexane and derivatized with dansyl chloroacetone solution. The contents of 9 biogenic amines in salmon were analyzed by LC-MS/MS. The relative standard uncertainty, standard uncertainty and expanded uncertainty of the method were evaluated. [Result] The average values of tryptamine, β - phenylethylamine, putrescine, cadaverine, tyramine, histamine, spermine, spermidine and norepinephrine were 4. 30, 5. 59, 5. 72, 6. 21, 4. 85, 5. 48, 7. 18, 6. 79 and 4. 77 mg/kg respectively, and the expanded uncertainty was 0. 46, 0. 56, 0. 48, 0. 54, 0. 42, 0. 50, 0. 64, 0. 55 and 0. 41 mg/kg respectively (k=2). [Conclusion] The preparation and dilution of standard stock solution and the linear fitting of standard curve have the greatest contribution to the uncertainty. It is suggested to select a measuring instrument with good accuracy and standardize the experimental operation and pretreatment steps.

Key words Salmon; Biogenic amine; Liquid chromatography tandem mass spectrometry; Uncertainty

三文鱼是鲑科鱼,主要分布在大西洋、太平洋和欧洲北极的海岸^[1]。三文鱼味道鲜美、营养丰富,不饱和脂肪酸(DHA、EPA、DPA)、蛋白质及维生素等含量丰富^[2],有助于儿童智力发育、预防心血管疾病、降低癌症发病率等^[3]。我国冰鲜三文鱼进口量逐年增加,三文鱼消费市场庞大^[4]。但是在贮存运输过程中,三文鱼肌肉组织在微生物的作用下,极易发生蛋白质的分解、腐败变质,产生生物胺等有毒代谢物^[5]。生物胺是极性或半极性化合物的氮化有机碱,根据其结构差异,可以分为3类:脂肪族生物胺(如腐胺、尸胺、亚精胺、精胺、胍基丁胺等^[6-7])、芳香族生物胺(如酪胺、苯乙胺、苯甲胺等^[8])、杂环胺(如组胺、色胺、5-羟色胺等^[9])。

目前多种方法用于测定食品中的生物胺,如液相色谱-串联质谱^[10]、高效液相色谱^[11]、薄层色谱^[12]、毛细管电 泳^[13]、气相色谱、气相色谱-串联质谱^[14]、生物传感器^[15]和 ELISA^[16]等。其中液相色谱-串联质谱法可对食品基质中的 生物胺快速准确地定量分析。Nalazek-Rudnicka等^[17]基于 LC-MS/MS分析啤酒样品中测定生物胺的差异,方法的检出 限和定量限分别是 0. 54~4. 30、1. 60~13. 00 ng/mL,该方法 灵敏度高、特异性好。Ochi^[18]通过反相液相色谱-串联质谱 法测定咸鲭鱼中的腐胺、色胺、酪胺、组胺、β-苯乙胺、精胺、 亚精胺、尸胺,8种分析物的平均回收率均在 87%~118%,对

作者简介 郑越男(1996—),女,湖北宜昌人,硕士研究生,研究方向: 食品质量与安全。*通信作者,研究员,博士,硕士生导师, 北事合兄立会检测研究

从事食品安全检测研究。 **收稿日期** 2021-04-15 生物胺快速准确进行定量分析。Gosetti 等^[19] 建立了一种 LC-MS/MS 法同时测定尿液中 16 种生物胺,方法的检出限 和定量限分别是 $0.3\sim6.6$, $1.0\sim21.9$ μ g/L,平均回收率在 $72.9\%\sim100.0\%$ 。

测量不确定度是说明测量结果质量的参数,用来表征合理、赋予被测量数值分散性^[20],用于评价测量结果的可信性、有效性、科学性,代表实验室测量水平^[21]。但是目前评定液相色谱-串联质谱法测定三文鱼中生物胺的不确定度的报道较少。余晓薇等^[22]通过高效液相色谱法对鱼和虾中的组胺含量进行测定,建立组胺不确定度分析方法。胡礼渊等^[23]对 GB/T 20768—2006《鱼和虾有毒生物胺的测定原理》进行不确定度评价,建立水产品中组胺含量不确定度评定方法。笔者根据《测量不确定度标示指南》和 JJF 1059. 1—2012《测量不确定度评定与表示》,对液相色谱-串联质谱法测定三文鱼中生物胺的不确定度进行分析,以期为三文鱼中生物胺准确测定提供依据,也为实验室质量控制提供参考。

1 材料与方法

1.1 材料

1.1.1 主要试剂。组胺(His)、精胺(Spe)、亚精胺(Spd)、尸胺(Cad)、腐胺(Put)、酪胺(Tyr)、色胺(Trp)均购自 Bepure公司;β-苯乙胺(Phe)、去甲基肾上腺素(Ne)标准品购自上海吉尔生化有限公司;丹磺酰氯(LC-MS级)购自 Sigma-Aldrich公司;乙腈(LC-MS级)、甲醇(HPLC级)、正己烷(HPLC级)均购自 Thermo fisher公司;高氯酸(分析纯)、三氯乙酸(分析纯)、氢氧化钠(分析纯)、碳酸氢钠(分析纯)、

氨水(分析纯)、盐酸(分析纯)均购自国药集团化学试剂有限公司。

1.1.2 主要仪器。UPLC-Xevo TQ-S 超高效液相色谱串联 三重四级杆质谱仪,购自美国 Waters 公司;ACQUITY UPLC HSST3(2.1 mm×100 mm,1.8 μm)色谱柱,购自美国 Waters 公司;ZWF-110X30 恒温水浴摇床,购自上海智城分析仪器 制造有限公司;CF16RX [[离心机,购自日本 HITACHI 公司。

1.2 方法

1.2.1 标准溶液的配制。

1.2.1.1 标准储备液的配制。称取色胺、 β -苯乙胺、腐胺、尸胺、组胺、酪胺、亚精胺、精胺标准品适量,用 0.1 mol/L HCl 配制成质量浓度各为 1 mg/mL 的标准储备液,置于-20 ℃冰箱储存备用,保存期为 4 个月。

1.2.1.2 混合标准系列溶液的配制。临用前配制。取"1.2.1.1"储备液 1 mL,用 0.1 mol/L HCl 稀释至 100 mL,得到 10 μ g/mL 的中间液,取标准品储备液 0.10.50.100.500.1000.2000 μ L 用 0.1 mol/L HCl 定容至 10 mL,得到浓度为 0.01.0.05.0.10.0.50.1.00.2.00 μ g/mL 的混合标准溶液。

1.2.2 样品制备。

1.2.2.1 样品提取。准确称取 5.0 g 代表性均质化样品置于 50 mL 离心管中,加入 15 mL 5%三氯乙酸溶液,涡旋 1 min,超声 10 min,10 ℃下 8 000 r/min 离心 5 min,上清液转移至 50 mL 离心管中。残渣中加入 10 mL 5%三氯乙酸溶液,涡旋 1 min,超声 10 min,10 ℃下 8 000 r/min 离心 5 min,合并上清液于上述离心管,待净化。

1.2.2.2 样品净化。向上述试样提取液中加入 20 mL 正己烷,涡旋振荡 5 min,10 ℃下 8 000 r/min 离心 5 min,弃去上层有机相,下层试样溶液加入 20 mL 正己烷再除脂一次,下层试样溶液转移至 25 mL 容量瓶用 5%三氯乙酸溶液定容至刻度,待衍生。

1.2.2.3 样品衍生。分别移取上述提取液和生物胺标准系列溶液各 0.1~mL,置于 2~mL 离心管中,依次加入 $100~\text{\muL}$ 饱和碳酸氢钠溶液、 $20~\text{\muL}$ 1~mol/L 氢氧化钠溶液和 0.1~mL 丹酰氯溶液(10~mg 溶于 1~mL 丙酮溶液),盖塞封口,60~℃避光反应 25~min。反应完毕后,加入 $10~\text{\muL}$ 氨水,60~℃避光反应

15 min 终止反应,氮气吹干后用乙腈定容至1 mL,过 0.2 μm 聚丙烯滤膜(GHP)滤膜后,待液质联用仪测定。

1.2.3 色谱条件。色谱柱为 Waters ACQUITY UPLC BEH Shield RP18 柱(2.1 mm×150 mm,1.7 μ m);流动相 A 相为含 0.1%甲酸的 50%乙腈水溶液,B 相为乙腈;柱温 30 $^{\circ}$ C;流速 0.3 mL/min,进样量 5 μ L;流动相梯度见表 1。

表 1 梯度洗脱程序
Table 1 Gradient elution procedure

时间 Time min	流动相 A Mobile phase A %	流动相 B Mobile phase B %	流速 Flow rate mL/min
0	80	20	0.3
6.0	80	20	0.3
9.0	60	40	0.3
11.0	30	70	0.3
13.0	20	80	0.3
13. 1	80	20	0.3
16.0	80	20	0.3

1.2.4 质谱条件。扫描方式为电喷雾正离子(ESI+)扫描; 检测方式为多反应监测(MRM);毛细管电压 3.0~kV;离子源 温度 120~C;脱溶剂气流量 1~000~L/h,脱溶剂气温度 500~C, 锥形气体流速 150~L/h。质谱检测参数见表 2。

表 2 9 种生物胺质谱检测参数

Table 2 Mass spectrometric parameters of 9 biogenic amines

分析物 Analyte	母离子 Parent ion (m/z)	定性离子 Qualitative ion (m/z)	定量离子 Quantitative ion(m/z)	碰撞电压 Impact voltage eV	锥孔电压 Cone voltage V
Trp	394.3	170. 3	144. 2	25	40
Phe	355.3	220.3	157. 2	30	45
Put	555.4	220. 2	170. 3	32	55
Cad	569.4	234. 3	170. 3	33	55
His	578.4	315.4	170. 3	29	55
Tyr	604.4	234. 2	170.3	34	50
Spd	845.5	170.3	360.5	40	60
Spe	1 135.6	638.3	360.3	49	55
Ne	869.0	851.6	170. 3	55	30

2 结果与分析

2.1 不确定度的识别和来源 依据测定步骤,对三文鱼中生物胺测定结果的不确定度的来源分析见图 1。

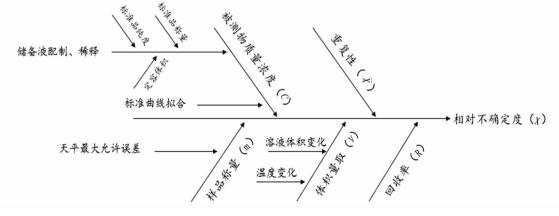


图 1 不确定度的识别和来源

Fig. 1 Identification and sources of uncertainty

2.2 不确定度的分析

- **2.2.1** 被测定物质量浓度 u(C)。标准储备液的配制、稀释 以及标准曲线的线性拟合是影响被测定物质量浓度(C)带 来的不确定度的主要过程。
- **2.2.1.1** 标准储备液配制过程引入的不确定度 $u(C_1)$ 。
- (1)根据标准物质证书所提供的标品纯度 p 和纯度误 差,按均匀分布考虑,由纯度引入的不确定度和相对不确定 度分别为 u(p) = 纯度误差/ $\sqrt{3}$ 、 $u_{rel}(p)$ = $\frac{u(p)}{p}$, 见表 3。

表 3 标准物质纯度引入的不确定度

Table 3 Uncertainty of purity of reference materials

分析物 Analyte	纯度 Purity//%	纯度误差 Purity error//%	u(p)	$u_{ m rel}(p)$
Trp	99. 20	2. 0	0.011 55	0. 011 64
Phe	97.60	_	_	_
Put	99.90	2.0	0.011 55	0.011 56
Cad	99.80	2.0	0.011 55	0.011 57
Tyr	99.60	2.0	0.011 55	0.01159
His	99.90	2.0	0.011 55	0.011 56
Spe	98.40	2.0	0.011 55	0.01173
Spd	99.80	0.5	0.002 89	0.002 89
Ne	97. 00			

注:"一"表示该物质标准品证书未提供纯度误差 Note:"一" means that the material standard certificate does not provide

(2)标准物质称量引入的不确定度由天平的最大允许误 差带来,按均匀分布考虑 $u(m_1) = \frac{0.01}{\sqrt{2}} = 0.005$ 77 mg、

 $u_{\text{rel}}(m_1) = \frac{u(m_1)}{m_1}$,见表 4_{\circ}

表 4 标准物质称量引入的不确定度

Table 4 Uncertainty of standard material weighing

分析物 Analyte	m_1 mg	$u(m_1)$	$u_{\mathrm{rel}}(m_1^{})$
Trp	9. 62	0.005 77	6. 00×10 ⁻⁴
Phe	9. 74	0.005 77	5.92×10^{-4}
Put	9. 54	0.005 77	6.05×10^{-4}
Cad	11.44	0.005 77	5.04×10^{-4}
Tyr	9. 58	0.005 77	6.02×10^{-4}
His	10. 20	0.005 77	5.66×10^{-4}
Spe	10.07	0.005 77	5.73×10^{-4}
Spd	10. 53	0.005 77	5.48×10^{-4}
Ne	10. 59	0.005 77	5.45×10^{-4}

(3)标准储备液定容体积引入的不确定度 $u(V_s)$ 主要来 源于容量允差和温度的影响。配制标准储备溶液用到1次 10 mL A 级容量瓶。20 ℃ 时 10 mL A 级容量瓶容量允差为± 0.02 mL,按三角形分布考虑,其标准不确定度为: $u(V_1)$ = \sqrt{n} ×容量允差/ $\sqrt{6} = \sqrt{1} \times 0.02/\sqrt{6} = 0.00816 \text{ mL}; u_{rel}(V_1) =$ $\frac{u(V_1)}{V_{t_0}}$ = 8. 16×10⁻⁴。 试验温度为(20±5)℃,20 ℃时水体积膨 胀系数为 0. 207×10⁻⁴ ℃ -1,浓盐酸(33%)体积膨胀系数为 0. 455×10⁻⁴ ℃ ⁻¹, 0. 1 mol/L 盐酸溶液中浓盐酸与水的体积

比 8.6:991.14,则 0.1 mol/L 盐酸溶液平均体积膨胀系数为 0.212×10^{-4} °C⁻¹,按温度波动为均匀分布, $k = \sqrt{3}$,10 mL A 级 容量 瓶 由 温 度 引 起 的 体 积 不 确 定 度 为: $u(V_{r_1})$ = $\frac{\alpha \times \Delta T \times V_{\frac{1}{100}} \times \sqrt{n}}{\sqrt{3}} = 0. \ 006 \ 12 \ \text{mL}; \ u_{\text{rel}} \ (V_{T1}) = \frac{u(V_{T1})}{V_{\frac{1}{100}}} =$ 6.12×10⁻⁴。标准储备液定容体积引入的不确定度为: $u(V_n) = \sqrt{u(V_1)^2 + u(V_{T1})^2} = 1.02 \times 10^{-2}; u_{rel}(V_n) =$ $\sqrt{u_{rel}(V_1)^2 + u_{rel}(V_{T_1})^2} = 1.02 \times 10^{-3}$ 。标准储备液配制过程引 入的不确定度为: $u(C_1) = \sqrt{u(p)^2 + u(m_1)^2 + u(V_n)^2}$ $u_{\rm rel}(C_1) = \sqrt{u_{\rm rel}(p)^2 + u_{\rm rel}(m_1)^2 + u_{\rm rel}(V_{\rm r})^2}$, 见表 5₀

表 5 标准储备液配制过程引入的不确定度

Table 5 Uncertainty introduced in preparation process of standard stock solution

分析物 Analyte	$u(C_1)$	$u_{ m rel}(C_1)$
Trp	0. 017 46	0. 011 72
Phe	0.013 09	0.001 33
Put	0.017 46	0.011 64
Cad	0.017 46	0.011 64
Tyr	0.017 46	0.011 67
His	0.017 46	0.011 63
Spe	0.017 46	0.011 80
Spd	0.013 40	0.003 18
Ne	0. 013 09	0.001 31

2.2.1.2 标准储备溶液稀释过程引入的不确定度 $u(C_{5})$ 。 该过程为取 1 mL 储备液稀释至 100 mL 得到 10 μg/mL 中间 液,按均匀分布处理,玻璃器具和温度波动引起的不确定度 见表 6,则 $u(C_2) = \sqrt{0.00286^2 + 0.04127^2} = 0.04137$ 、 $u_{col}(C_2) = \sqrt{0.00286^2 + 0.00048^2} = 0.00290_{\odot}$

2.2.1.3 标准曲线拟合引入的不确定度 $u(C_3)$ 。配制标准 系列曲线溶液,浓度(以色胺为例,其余8种生物胺与色胺的 处理步骤相同)分别为 0.962、4.810、9.620、24.050、48.100、 96.200 ng/mL, 重复测定 2 次, 以浓度为横坐标、峰面积为纵 坐标绘制标准曲线。向空白样品中加入一定含量的色胺得 到阳性样品浓度为 C_0 ,按样品测定步骤处理后重复测定3 次,其结果见表7。标准曲线拟合引入的不确定度的计算公 式为:

$$u(C_3) = \frac{S_R}{a} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(C_0 - C_i)^2}{\sum_{i=1}^n (C_i - \overline{C}_i)^2}}$$

$$S_R = \sqrt{\frac{\sum_{i=1}^n [A_i - (aC_i + b)]^2}{n - 2}}$$

$$\overline{C}_i = \frac{\sum_{i=1}^6 C_i}{6}$$

$$u_{rel}(C_3) = u(C_3) / C_0$$

其中,n 为次数,6个质量浓度重复测定2次(n=6×2= 12),p 是 C_0 的测定次数(C_0 =3)。

表 6 标准系列溶液稀释过程引入的不确定度

Table 6 Uncertainty introduced in dilution process of standard series solution

器具 Appliance	容量允差 Capacity tolerance mL	不确定度 $u(V_2)$	相对 不确定度 $u_{\mathrm{rel}}(V_2)$	温度误差 Temperature error ℃	0.1 mol/L HCl 体积膨胀系数 0.1 mol/L HCl Volume expansion coefficient//℃ ⁻¹	不确定度 $u(V_{T2})$	相对 不确定度 $u_{\rm rel}(V_{T2})$	合成 不确定度 Combined uncertainty	相对合成 不确定度 Relative combined uncertainty
1 mL 移液器 1 mL pipette	±0.007	$0.007/\sqrt{6} = 0.002.86$	0.007/√6/1=	±5	2. 12×10 ⁻⁵	2. 12×10 ⁻⁵ ×5×	6. 12×10 ⁻⁵ /1=	0.002 86	0.002 86
	. 0. 1		0.002 858	. =	2 12 10=5	$1/\sqrt{3} = 6.12 \times 10^{-5}$	6. 12×10 ⁻⁵	0 041 27	0.000.49
100 mL 容量瓶 100 mL volumetri	±0.1	$0.1/\sqrt{6} =$	$0.1/\sqrt{6}/100=$	±5	2.12×10^{-5}	2. 12×10 ⁻⁵ ×5×	$6.12 \times 10^{-3} / 100 =$	0.041 27	0.00048
flask	·C	0.040 82	0.000 408			$100/\sqrt{3} = 6.\ 12 \times 10^{-3}$	6. 12×10^{-5}		

表 7 标准曲线拟合带来的不确定度

Table 7 Uncertainty caused by standard curve fitting

分析物 Analyte	S_R	C_0 ng/mL	\overline{C}_i ng/m $f L$	线性方程 Linear equation	R^2	$u(C_3)$	$u_{ m rel}(C_3)$
Phe	222 993. 145	17. 038	25. 838	y = 332 329x+54 458	0. 999 8	0. 528	0.031 0
Trp	245 367. 280	20. 266	25.520	y = 251 874x + 226 171	0.999 5	0.516	0.025 5
Put	72 105.098	23. 178	25.308	$y = 97 \ 075x + 11 \ 836$	0.9999	0. 142	0.006 1
Cad	91 554.649	19.671	30. 348	y = 71 923x + 43 174	0.9998	0. 233	0.0118
His	108 117. 404	22.712	27.058	y = 99 617x + 73 409	0.9997	0. 222	0.009 8
Tyr	68 188. 085	20. 505	25.413	y = 122712x + 37184	0.9999	0. 142	0.0069
Spe	5 285. 316	20. 118	27. 984	$y = 14 \ 128x - 5 \ 363. \ 8$	0. 999 9	0.012	0.0006
Spd	56 799. 212	22.400	26.713	$y = 31 \ 209x - 86 \ 669$	0.998 3	0.117	0.005 2
Ne	1 451. 099	22. 251	28.093	y = 1 465x + 1 197.3	0. 999 4	0.003	0.000 1

综合标准储备液配制、稀释、标准系列溶液配制、标准曲线拟合引入的不确定度,被测定物质质量浓度引入不确定度

为:
$$u(C) = \sqrt{u(C_1)^2 + u(C_2)^2 + u(C_3)^2}$$
、 $u_{\text{rel}}(C) = \sqrt{u_{\text{rel}}(C_1)^2 + u_{\text{rel}}(C_2)^2 + u_{\text{rel}}(C_3)^2}$,见表 8_{\circ}

表 8 被测定物质质量浓度引入不确定度

Table 8 Uncertainty introduced by mass concentration of determined substance

分析物 Analyte	u(C)	$u_{ m rel}(\mathit{C})$	
Trp	0.5187	0.045 72	
Phe	0. 530 5	0.047 60	
Put	0. 151 6	0.038 42	
Cad	0. 239 0	0.039 72	
Tyr	0. 151 6	0.038 56	
His	0. 228 3	0.039 17	
Spe	0.0544	0.037 98	
Spd	0. 128 0	0.036 61	
Ne	0.0518	0.036 12	

- **2.2.2** 测量重复性产生的不确定度 $u(\bar{X})$ 。测定生物胺的加标回收率,平行测定 6次,计算平均含量 \bar{X} 、标准偏差 $S(\bar{X})$,并计算回收率引入的不确定度和相对不确定度: $u(\bar{X}) = S(\bar{X})/\sqrt{6}$ 、 $u_{\rm rel}(\bar{X}) = u(\bar{X})/\bar{X}$,具体见表 9。
- **2.2.3** 回收率产生的不确定度 u(R)。根据测定回收率,计算平均回收率 R、标准偏差 S(R),并计算回收率引入的不确定度和相对不确定度: $u(R) = S(R)/\sqrt{6}$ 、 $u_{\rm rel}(R) = u(R)/R$,具体见表 10。用显著性检测来确定平均回收率是否与 1. 0 有显著性差异。检测统计数据 $T = \frac{|1-\bar{R}|}{u_u}$,设置信水平为 95%,

查表得 $t_{95}(6)$ = 2. 45,9 种生物胺的 T 值均大于 $t_{95}(6)$,说明 差异性显著,u(R)可以用于结果校正。

2021 年

表 9 生物胺测量重复性带来的不确定度

Table 9 Uncertainty caused by repeatability of biogenic amine measurement

分析物 Analyte	$ar{X}$ mg/kg	$S(\bar{X})$	$u(\bar{X})$	$u_{ ext{rel}}(ar{X})$
Trp	4. 303	0. 250	0. 102 0	0.023 8
Phe	5. 587	0.091	0.037 0	0.0066
Put	5. 724	0.084	0.0342	0.0060
Cad	6. 212	0.078	0.0320	0.005 1
Tyr	4. 852	0.081	0.0329	0.006 8
His	5.480	0. 229	0.0934	0.017 1
Spe	7. 179	0.325	0.133 0	0.018 5
Spd	6.789	0. 165	0.067 4	0.009 9
Ne	4. 772	0. 216	0.0880	0.0184

表 10 9 种生物胺的回收率引入的不确定度

Table 10 Uncertainty of recoveries of 9 biogenic amines

分析物 Analyte	<i>R</i> %	u(R)	$u_{ m rel}(R)$	Т
Trp	88. 23	0.009 5	0.011 2	12. 429
Phe	84. 17	0.0105	0.0115	15.076
Put	92.52	0.0129	0.013 8	5.798
Cad	89.45	0.0147	0.015 8	7. 177
Tyr	88.80	0.015 1	0.0164	7.417
His	89.43	0.0119	0.013 4	8.882
Spe	88.45	0.0113	0.0128	10. 221
Spd	87. 24	0.0111	0.0118	11.495
Ne	85.48	0.009 4	0.0109	15. 365

2.2.4 体积量取产生的不确定度 u(V)。

2. 2. 4. 1 溶剂体积量取引入的不确定度 $u(V_{\text{RM}})$ 。样品经衍生后,氮气吹干,1 mL 乙腈定量引入 $u(V_{\text{RM}})$,按均匀分布,1 mL 移液器容量带来的不确定度为 $u(V_{\text{el}})=0.01/\sqrt{3}=0.005$ 77 mL、 $u_{\text{rel}}(V_{\text{el}})=\frac{u(V_{\text{el}})}{V_{\text{Zh}}}=\frac{0.005}{1}=0.005$ 77。温度波动引起的乙腈的体积变化带来的不确定度按均匀分布计算得 $u(V_{72})=\alpha($ 乙腈 $)\times5\times\frac{1}{\sqrt{3}}=1.37\times10^{-3}\times5\times\frac{1}{\sqrt{3}}=0.003$ 95 mL、 $u_{\text{rel}}(V_{72})=\frac{u(V_{72})}{V_{\text{Zh}}}=0.003$ 95。溶剂体积量取引入的不确定度 $u(V_{\text{RM}})=\sqrt{u(V_{\text{el}})^2+u(V_{72})^2}=0.006$ 995 mL,溶剂体积量取引入的相对不确定度 $u(V_{\text{RM}})=\sqrt{u(V_{\text{el}})^2+u(V_{72})^2}=0.006$ 995。

2.2.4.2 仪器进样体积引入的不确定度 $u(V_{\text{Q器}})_{\circ}$ $u(V_{\text{Q器}})$ =

进样针容积相对标准偏差/ $\sqrt{3}$ = 0. 01/ $\sqrt{3}$ = 0. 005 77 μ L、 $u_{\rm rel}(V_{\rm QW}) = \frac{u(V_{\rm QW})}{2} = \frac{0.00577}{5} = 0.00115$;体积量取产生的不确定度: $u(V) = \sqrt{u(V_{\rm RM})^2 + u(V_{\rm QW})^2} = 0.00907$ 、 $u_{\rm rel}(V) = \sqrt{u_{\rm rel}(V_{\rm RM})^2 + u_{\rm rel}(V_{\rm QW})^2} = 0.00704$ 。

- **2.2.5** 样品称量引起的不确定度 u(m)。称 5.0 g 样品,天平最大允许误差为±0.1 mg,假设均匀分布,u(m)= 0.1/ $\sqrt{3}$ = 0.057 7 mg、 $u_{\rm rel}(m)$ = u(m)/m= 0.057 7×10⁻³/5.0=1.154×10⁻⁵。
- **2.3** 相对标准不确定度的合成 液相色谱 串联质谱测定三文鱼中生物胺的合成相对标准不确定度 $u_{\rm rel}(X)$ 及合成标准不确定度 u(X) 为 $u_{\rm rel}(X)$ = $\sqrt{u_{\rm rel}(C)^2 + u_{\rm rel}(R)^2 + u_{\rm rel}(\bar{X})^2 + u_{\rm rel}(V)^2 + u_{\rm rel}(m)^2}$ 、 $u(X) = u_{\rm rel}(X) \times \bar{X}$,具体见表 11。

表 11 生物胺的合成相对标准不确定度

Table 11 Relative standard uncertainty of biogenic amine synthesis

分析物 Analyte	$u_{\mathrm{rel}}(\mathit{C})$	$u_{ ext{rel}}(ar{X})$	$u_{ m rel}(R)$	$u_{\mathrm{rel}}(\mathit{V})$	$u_{\mathrm{rel}}(m)$	$u_{\mathrm{rel}}(X)$	u(X)
Trp	0.045 7	0.023 8	0.011 2	0.007 0	1. 154×10 ⁻⁵	0.053 2	0. 229
Phe	0.047 6	0.0066	0.0115	0.0070	1.154×10^{-5}	0.0499	0.279
Put	0.0384	0.005 9	0.013 8	0.0070	1.154×10^{-5}	0.041 9	0. 240
Cad	0.0397	0.005 1	0.015 8	0.0070	1.154×10^{-5}	0.043 6	0.271
Tyr	0.038 6	0.006 7	0.0164	0.007 0	1.154×10^{-5}	0.043 0	0.209
His	0.039 2	0.017 1	0.013 4	0.007 0	1.154×10^{-5}	0.045 3	0. 248
Spe	0.038 0	0.018 5	0.0128	0.0070	1.154×10^{-5}	0.044 7	0.321
Spd	0.0366	0.009 9	0.0118	0.0070	1.154×10^{-5}	0.040 3	0. 274
Ne	0.036 1	0.0184	0.0109	0.0070	1.154×10^{-5}	0.042 6	0. 203

2.4 扩展不确定度 根据 JJF 1059. 1—2012, $U = u(X) \times k$, k 为包含因子, 取 p = 95% 的置信概率, 包含因子 k = 2, 基于

UPLC-MS/MS 的柱前衍生法测定三文鱼中生物胺含量的结果见表 12。

表 12 扩展不确定度及检测结果(k=2)

Table 12 Expanded uncertainty and test result

分析物 Analyte	合成相对不确定度 Combined relative uncertainty	合成不确定度 Combined uncertainty mg/kg	实测值 Measured value mg/kg	扩展不确定度 Expanded uncertainty mg/kg	检测结果 Test results mg/kg
Trp	0.053	0. 23	0.46	0.46	4. 30±0. 46
Phe	0.050	0. 28	0.56	0. 56	5.59±0.56
Put	0.042	0. 24	0.48	0.48	5.72±0.48
Cad	0.044	0. 27	0.54	0. 54	6. 21±0. 54
Tyr	0.043	0.21	0.42	0.42	4.85±0.42
His	0.045	0. 25	0.50	0. 50	5.48 ± 0.50
Spe	0.045	0.32	0.64	0. 64	7.18±0.64
Spd	0.040	0. 27	0.55	0. 55	6.79±0.55
Ne	0.043	0.20	0.41	0. 41	4.77±0.41

3 结论

该试验评价了三文鱼中生物胺的液相色谱-串联质谱法的不确定度,色胺、 β -苯乙胺、腐胺、尸胺、酪胺、组胺、精胺、亚精胺、去甲基肾上腺素的含量分别为 4.30±0.46、5.59±0.56、5.72±0.48、6.21±0.54、4.85±0.42、5.48±0.50、7.18±0.64、6.79±0.55、4.77±0.41 mg/kg。结果表明,试验操作步骤中会多方引人不确定度,分析发现标准储备液的配制、稀

释以及标准曲线的线性拟合对不确定度的贡献值最大,回收率次之。在试验过程中,操作人员熟练水平的提升、仪器的及时维护、平行样本测定次数的增加等方法可减小测量结果的不确定度。

参考文献

[1] GUILLAUD E, CORNETTE R, BÉAREZ P. Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times [J]. Journal of archae-

- ological science, 2016, 65:84-92.
- [2] SPRAGUE M, FAWCETT S, BETANCOR M B, et al. Variation in the nutritional composition of farmed Atlantic salmon (Salmo salar L.) fillets with emphasis on EPA and DHA contents [J/OL]. Journal of food composition and analysis, 2020, 94 [2020-11-05]. https://doi.org/10.1016/j.jfca.2020.103618.
- [3] TURCHINI G M, EMERY J A, TRUSHENSKI J, et al. Distinguishing the nutritional requirements and physiological fate of dietary EPA and DHA in Atlantic salmon[J]. Journal of nutrition & intermediary metabolism, 2014, 1:9-10.
- [4] 马聪聪. 基于蛋白组学的三文鱼物种鉴别及新鲜度变化机理研究[D]. 石家庄:河北科技大学,2020.
- [5] BARDÓCZ S. Polyamines in food and their consequences for food quality and human health [J]. Trends in food science & technology, 1995, 6(10): 341–346.
- [6] PAPAGEORGIOU M, LAMBROPOULOU D, MORRISON C, et al. Literature update of analytical methods for biogenic amines determination in food and beverages [J]. TrAC trends in analytical chemistry, 2018, 98;128–142.
- [7] 赵丽,姚秋虹.食品安全检测新方法[M].厦门:厦门大学出版社,2019.
- [8] 何璇, 马堃, 哈斯, 等. 食品中生物胺形成与抑制的研究进展[J/OL]. 食品与发酵工业, 2021-03-24[2021-03-25]. https://doi.org/10.13995/j.cnki.11-1802/ts.026163.
- [9] RUIZ-CAPILLAS C, JIMÉNEZ-COLMENERO F. Biogenic amines in meat and meat products [J]. Critical reviews in food science and nutrition, 2004, 44(7/8):489-499.
- [10] SAGRATINI G, FERNÁNDEZ-FRANZÓN M, DE BERARDINIS F, et al. Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography-tandem mass spectrometry[J]. Food chemistry, 2012, 132(1):537-543.
- [11] 高慧,汪洋,邢燕,等. 分散固相萃取-柱前衍生-高效液相色谱法测定 人体尿样中 6 种生物胺[J]. 现代预防医学,2020,47(20):3797-3801, 3830
- [12] 李燕君. 薄层色谱法检测黄酒生物胺的研究[J]. 广州化学,2017,42 (4):18-25.

[13] AN D, CHEN Z Q, ZHENG J C, et al. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence [J]. Food chemistry, 2015, 168:1-6.

2021 年

- [14] WOJNOWSKI W, NAMIEŚNIK J, PŁOTKA-WASYLKA J. Dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry for in situ determination of biogenic amines in meat; Estimation of meat's freshness [J]. Microchemical journal, 2019, 145;130–138.
- [15] AHANGARI H, KURBANOGLU S, EHSANI A, et al. Latest trends for biogenic amines detection in foods; Enzymatic biosensors and nanozymes applications [J]. Trends in food science & technology, 2021, 112;75–87.
- [16] LI Y F, LIN Z Z, HONG C Y, et al. Histamine detection in fish samples based on indirect competitive ELISA method using iron-cobalt co-doped carbon dots labeled histamine antibody [J]. Food chemistry, 2021, 345: 128812.
- [17] NALAZEK-RUDNICKA K, KUBICA P, WASIK A. Discrepancies in determination of biogenic amines in beer samples by reversed phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry [J]. Microchemical journal, 2020, 159;105574.
- [18] OCHI N. Simultaneous determination of eight underivatized biogenic amines in salted mackerel fillet by ion-pair solid-phase extraction and volatile ion-pair reversed-phase liquid chromatography-tandem mass spectrometry [J]. Journal of chromatography A, 2019, 1601:115–120.
- [19] GOSETTI F, MAZZUCCO E, GENNARO M C, et al. Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS[J]. Analytical and bioanalytical chemistry, 2013, 405 (2/3):907-916.
- [20] 左兆迎,臧海燕,刘娓娓. 检测实验室不确定度评定的关键点及控制措施[J].质量与认证,2021(4):46-48.
- [21] 郝栋栋,张艳,赵娜. 如何满足实验室认可对不确定度评定的相关要求[J]. 质量与认证,2021(4);49-51.
- [22] 余晓薇, 陈俊玉, 王碧生, 等. 鱼和虾中组胺残留量 HPLC 法测定的不确定度评定[J]. 福建畜牧兽医, 2015, 37(1): 3-6.
- [23] 胡礼渊,孙高英,廖和菁. 液相色谱测定水产品中组胺含量不确定度 评估[J]. 食品研究与开发,2015,36(1):106-109.

(上接第181页)

参考文献

- [1] 李炎强,胡有持,王癉,等,烤烟叶片与烟梗挥发性、半挥发性酸性成分的研究[J].中国烟草学报,2001,7(1):1-5.
- [2] 李炎强,郝建辉,赵明月,等. 烤烟烟梗和叶片中性香味成分的分析 [J]. 烟草科技,2002,35(11):3-6.
- [3] 彭黎明. 烤烟烟梗中某些香味成分的分析研究[C]//中国烟草学会2006 年学术年会论文集. 北京:中国烟草学会,2006.
- [4] 陶红, 沈光林, 赵谋明, 等. 烟梗的碱处理[J]. 烟草科技, 2009, 42(4): 37-40
- [5] 陈良元,王鹏,杨清. 制梗丝加料位点试验[J]. 烟草科技,2003,36(3): 9-10.
- [6] 施林燕. 微生物发酵及酶解烟梗物料的研究[D]. 无锡:江南大学, 2012.
- [7] 夏露,张娟,王远亮,等. 生物技术在烟叶发酵中的应用研究进展[J]. 安徽农业科学,2010,38(22):12013-12015.
- [8] 陈兴,申晓峰,巩效伟,等. 利用微生物制剂提高梗丝品质的研究[J]. 中国烟草学报,2013,19(3):83-86.
- [9] 巩效伟,段焰青,汪显国,等,产香微生物复合处理提升梗丝品质的研究[J].云南农业大学学报(自然科学版),2016,31(5):862-866.
- [10] KOLLER J B C. Der tabak in naturwissenschaftlicher [M]. Augsburg:

Landwirthschaftlicher und Technischer Beziehung, 1958.

- [11] 郭林青, 朴永革, 朱春阳, 等. 烟草产香酵母 YG-4 的筛选鉴定及香气成分分析[J]. 轻工学报, 2019, 34(5):27-31.
- [12] 郑坚强,田数,帖金鑫,等.西方许旺酵母菌及其双加氧酶在烟草增香中的应用[J].湖北农业科学,2016,55(21):5612-5617.
- [13] 戴丽君,黄申元,郑彬,等. 酵母在造纸法再造烟叶中的初步应用研究 [J]. 江西农业学报,2011,23(1):18-19,23.
- [14] 周瑢,孔浩辉,何艳明,等. 生香酵母发酵改善烟梗提取液性质研究 [J]. 食品工业科技,2012,33(23):73-75,80.
- [15] 张晨,许赣荣,严新龙. 利用酿酒酵母改进烟草萃取液的香气特性 [J]. 食品工业科技,2012,33(20):137-141.
- [16] 王玉,王保兴,武怡,等. 卷烟挥发性成分的聚类分析[J]. 烟草科技, 2007,40(2):48-52.
- [17] 史宏志,刘国顺,杨惠娟. 烟草香味学[M]. 北京:中国农业出版社, 2011.
- [18] 杨虹琦,周冀衡,罗泽民,等. 微生物和酶在烟叶发酵中的应用[J]. 湖南农业科学,2004(1):63-66.
- [19] 郭晓雪,金保锋,沈光林. 烟叶发酵研究进展[J]. 烟草科技,2004,37 (11):7-9,14.
- [20] 王瑞新. 烟草化学[M]. 北京:中国农业出版社,2003.
- [21] 胡建军,周冀衡,李文伟,等. 烤烟香味成分与其感官质量的典型相关分析[J]. 烟草科技,2007,40(3):9-15,22.