行距和密度配置对连表 8 号群体质量及产量的影响

王国强1,王静静2,杜洪艳2*,李东升2

(1. 江苏省大华种业集团有限公司东辛分公司,江苏东辛 222248; 2. 江苏省连云港农垦农业科学研究所,江苏连云港 222248)

摘要 为探索淮北黏土地地区晚播稻茬麦高产高效栽培技术,以当地主栽品种之一连麦 8 号为试验材料,研究不同行距、密度配置对连 麦 8 号群体质量及产量的影响。结果表明,在一定范围内,连麦 8 号产量随着播种密度的增加和行距的减小逐渐增高,其中当播种密度 为 600 万/hm²、行距为 15 cm 时以及播种密度为 525 万/hm²、行距为 15 cm 时,小麦产量达到最大值,说明对于淮北地区晚播稻茬麦要想获得高产,必须配以相对较窄行距与较高密度。

关键词 稻茬麦;行距;密度;群体质量;产量中图分类号 S512.1 文献标识码 A 文章编号 0517-6611(2022)05-0035-03 **doi**:10.3969/i.issn.0517-6611.2022.05.010

开放科学(资源服务)标识码(OSID): 简

Line Spacing and Density Treatment on Population Quality and Yield of Lianmai 8

WANG Guo-qiang¹, WANG Jing-jing², DU Hong-yan² et al. (1. Dongxin Branch of Jiangsu Dahua Seed Industry Group Co., Ltd., Dongxin, Jiangsu 222248; 2. Lianyungang Agricultural Reclamation Agricultural Science Institute, Lianyungang, Jiangsu 222248)

Abstract In order to explore the high-yield and high-efficiency cultivation technique of late-sowing and stubble wheat in Huaibei sticky land area, we researched the effects of line spacing and density on the quality and yield of Lianmai 8 with the main cultivar Lianmai 8 as the test material. Results showed within a certain range, yield of Lianmai 8 gradually enhanced as the increase of sowing denisty and the decrease of line spacing. The yield reached the maximun under 6 000 thousand/hm², line spacing 15 cm and 2 520 thousand/hm², line spacing 15 cm, which indicated that high density and narrow line spacing were needed so as to obtain high yield in Huaibei Area.

Key words Wheat following rice; Line spacing; Density; Population quality; Yield

一直以来,合理的种植密度、适宜的播种行距是小麦能够获得高产高效的重要途径之一^[1-2]。近年来,苏北地区随着水稻中晚熟品种的推广和直播稻面积的不断扩大,以及受连续阴雨等不良天气的影响,造成水稻收获期和小麦播种期延迟^[3]。小麦晚播后,会因积温不足出现出苗慢、出苗不均匀、总叶片数变少、分蘖成穗率低、多独秆成穗及穗数不足等情况^[4-5]。新情况的出现导致传统的行距密度配置不再适用于当前生产。鉴于此,笔者以农业生产中所面临的实际问题为出发点,研究了不同行距配置和密度组合对主栽品种连麦8号产量的影响,以期为大田生产措施的执行提供数据支持。

1 材料与方法

- **1.1 试验地概况** 试验在东辛分公司农业科学研究所试验 田 19#地进行,所选地块基本肥力中上,上茬作物为水稻。
- **1.2 试验材料** 供试品种为连麦 8 号,分蘖能力中上。人工小区播种;播种期为 2018 年 11 月 15 日;出苗期为 11 月 26 日;示范时间为 2018 年 11 月 15 日—2019 年 6 月 10 日。
- 1.3 试验设计 试验采用 2 因素随机区组试验设计,设行距(A)、密度(B)2 个因素。4 个行距水平: 15、20、25、30 cm, 分别记作 A_{15} 、 A_{20} 、 A_{25} 、 A_{30} 处理; 4 个密度水平: 基本苗分别为 375 万、450 万、525 万、600 万/ hm^2 ,分别记作 B_{25} 、 B_{30} 、 B_{35} 、 B_{40} 处理,共 16 个处理,每个处理设 3 个重复,共计 48 个小区,每个小区面积为 20 m^2 ,小区间开墒沟为界,重复间分别

作者简介 王国强(1980—),男,江苏连云港人,助理农艺师,从事农作 物良种繁育和管理、新品种引进与推广研究。*通信作者, 高级农艺师,硕士,从事土壤肥料、作物品种筛选及栽培试 验工作。

收稿日期 2021-03-31

设宽 50 cm 走道,四周设保护行。从肥料运筹来看,各处理施纯 $N346.5 \text{ kg/hm}^2$,底肥为磷酸二铵 225 kg/hm^2 、尿素 225 kg/hm^2 ,返青肥 112.5 kg/hm^2 ,拔节肥 262.5 kg/hm^2 ,倒二叶肥 75 kg/hm^2 。

1.4 记载与调查内容 调查各处理小麦群体茎蘖动态,在成熟前进行取样考种、实收计产。

2 结果与分析

2.1 行距配置和密度组合对连麦 8 号群体动态的影响 由 表1可知,各处理因播期和出苗期较迟,冬前无分蘖产生,至 越冬期有少量分蘖发生,返青期总茎蘖数开始快速增加,至 起身期-拔节期达到最大值,之后随分蘖两极分化而下降,呈 明显单峰变化趋势。各生育时期同一行距配置下,除 A15 处 理的越冬期外,其余各处理群体总茎蘖数由高到低依次为 B40 处理>B35 处理>B30 处理>B25 处理,且不同密度处理间差 异明显。相同行距处理下不同密度处理的总成穗率则表现 为 B₂₅ 处理>B₃₀ 处理>B₃₅ 处理>B₄₀ 处理,这表明 B₂₅ 处理下 个体与群体矛盾较小,单株营养面积较大,有利于分蘖成穂, 但由于总体茎数少,最终的成穗数较少。而 B_{35} 和 B_{40} 处理 虽然总成穗率较低,但由于群体总茎蘖数较多,最终获得较 多穂数。在同一密度处理下,A15处理的总成穗率最多,表明 在同一密度下缩小行距会拉大株距,增大单株营养面积有利 于植株分蘖发生及提高分蘖成穗率。同时可以看出,A₁₅B₄₀、 $A_{20}B_{40}$ 、 $A_{25}B_{40}$ 、 $A_{30}B_{35}$ 和 $A_{30}B_{40}$ 处理群体总茎蘖数在起身期 分蘖就达到了最高峰,且成穗率均较低,这主要是因为任一 行距配以高密度处理后,植株间株距太小,单株营养面积小, 相互间竞争激烈,空间利用不合理,影响分蘖发生及植株正 常生长,进而造成成穗率偏低。同时可以看出,随着播种密 度的增大,总茎蘖数及最终成穗数也随之增大,但总成穗率 则不断降低。窄行距相对宽行距成穗率偏高,相同密度处理下各处理总成穗率由高到低的排序为 A_{15} 处理> A_{20} 处理>

A₂₅ 处理>A₃₀ 处理,这主要是因为相同密度下较窄行距可以

在减小行距的同时拉大株距,使植株间存在一个较为合理的 田间分布,更有利于空间配置,抑制了无效分蘖的发生,利于 增加分蘖和成穗。

表 1 不同处理组合对连麦 8 号群体茎蘖动态的影响

Table 1 Effects of different treatment combination on the population tillering dynamics of Lianmai 8

行距处理 Line spacing treatment	密度处理 Density treatment	基本苗 Basic seedlings 万/hm²	群体总茎蘖数 Total tillers of population//万/hm²							
			越冬期 Overwintering stage	返青期 Returnning green stage	起身期 Standing stage	拔节期 Jointing stage	孕穗期 Booting stage	开花期 Flowering stage	成熟期 Mature stage	一 总成穂率 Total ear rate//%
A ₁₅	B ₂₅	381	426. 0	486.0	1 122.0	1 197.0	952. 5	543.0	516.0	43. 1
	B_{30}	453	537. 0	618.0	1 252.5	1 369.5	987.0	589.5	586. 5	42.8
	B_{35}	525	594.0	633.0	1 506.0	1 563.0	1 303.5	646.5	636.0	40.7
	B_{40}	597	567.0	654.0	1 774.5	1 759.5	1 383.0	690.0	684.0	38.5
\mathbf{A}_{20}	B_{25}	378	468.0	552.0	1 092.0	1 132.5	850. 5	649.5	493.5	42.5
	B_{30}	456	489. 0	618.0	1 300.5	1 368.0	957.0	585.0	576.0	42. 1
	B_{35}	528	612.0	702.0	1 536.0	1 549.5	1 224.0	642.0	628.5	40.6
	B_{40}	600	708. 0	852.0	1 752.0	1 746.0	1 344.0	666.0	660.0	37.7
A_{25}	B_{25}	381	441.0	561.0	1 104.0	1 149.0	768. 0	496. 5	487.5	42.4
	${\rm B}_{30}$	450	513.0	631.5	1 255.5	1 359.0	903.0	591.0	570.0	41.9
	B_{35}	531	606.0	795.0	1 479.0	1 518.0	1 144. 5	648.0	609.0	40. 1
	B_{40}	603	693.0	813.0	1 729.5	1 666.5	1 197.0	667.5	645.0	37.3
A_{30}	B_{25}	375	486.0	627.0	1 129.5	1 143.0	771.0	481.5	472.5	41.3
	${\rm B}_{30}$	453	522.0	664. 5	1 206.0	1 264.5	852.0	561.0	519.0	41.0
	B_{35}	531	669.0	772.5	1 468.5	1 437.0	931.5	594.0	576.0	39. 2
	B_{40}	600	693.0	880. 5	1 623.0	1 581.0	1 318.5	598.5	582.0	35.9

由表 2 可知, 从行距配置的主效应看, 拔节期、孕穗期、 开花期、成熟期的群体总茎蘖数及总成穗率均以 A_{15} 处理最高, A_{30} 处理最低, 处理间差异较小。从密度主效应看, 各生 育时期小麦群体总茎蘖数表现为 B_{40} 处理> B_{35} 处理> B_{30} 处 理>B₂₅ 处理,且不同密度间差异明显,随密度的增加,群体总 茎蘖数逐渐增加,而总成穗率则逐渐降低,说明密度是影响 小麦群体茎蘖动态的最主效因素。

表 2 不同行距和密度处理对连麦 8 号群体总茎蘖数的主效应

 $Table\ 2\quad Main\ effects\ of\ different\ line\ spacing\ and\ density\ treatments\ on\ the\ population\ tillers\ of\ Lianmai\ 8$

			群	体总茎蘖数 To	otal tillers of po	pulation//万/h	m ²		M → 15 +++ →+	
处理编号 Treatment code	基本苗 Basic seedlings 万/hm ²	越冬期 Overwintering stage	返青期 Returnning green stage	起身期 Standing stage	拔节期 Jointing stage	孕穗期 Booting stage	开花期 Flowering stage	成熟期 Mature stage	总成穂率 Total ear rate//%	
A ₁₅	489. 0	531.0	598.5	1 414.5	1 473.0	1 156. 5	618. 0	606.0	41.3	
A_{20}	490. 5	570.0	681.0	1 420.5	1 456. 5	1 093.5	636.0	589.5	40. 7	
A ₂₅	492.0	564.0	700.5	1 392.0	1 423.5	1 003.5	601.5	577.5	40. 4	
A_{30}	490. 5	592. 5	736.5	1 357.5	1 356.0	969.0	559.5	537.0	39. 4	
${ m B}_{25}$	379. 5	456.0	556.5	1 111.5	1 162.5	835. 5	543.0	492.0	42. 3	
${ m B}_{30}$	462.0	544. 5	669.0	1 320.0	1 350.0	975.0	585.0	549.0	40. 7	
${ m B}_{35}$	529. 5	621.0	726.0	1 497.0	1 516.5	1 150.5	633.0	612.0	40. 1	
B_{40}	600.0	666.0	799.5	1 720.5	1 689.0	1 311.0	655.5	643.5	37. 3	

2.2 行距配置和密度组合对连麦 8 号产量及其构成因素的 影响 由表 3 可知,同一行距条件下,成穗数随着密度的增加而提高,穗粒数和千粒重则总体上呈下降趋势。同一行距处理下 B_{40} 处理的成穗数最多,而 B_{25} 处理最少,且行距间差异多不明显。同一行距处理下小麦实际产量基本随着密度的增加而提高。同一密度处理下 A_{15} 和 A_{20} 处理的实际产量较高。

从行距配置的主效应(表4)来看,相同条件下小麦成 穗数和穗粒数随着行距的增大而降低,小穗退化数和千粒 重则无明显差异;小麦实际产量以 A_{15} 处理最高, A_{20} 处理次之,而 A_{30} 处理最低。这表明仅从行距配置对产量的影响方面考虑, A_{15} 处理可获得较高产量。从密度主效应来看,小麦成穗数随着密度的增加而增加,穗粒数则随着密度的增加而降低,其中以 B_{40} 处理的实际产量较高, B_{35} 处理次之,且二者相近,这表明仅就小麦产量来看,600 万和525 万/hm² 的密度处理较为理想。综上所述,播期较迟的稻茬小麦,行距 15 cm 配以 600 万或 525 万/hm² 的密度处理均可获得较高产量。

表 3 不同处理组合对连麦 8 号产量及其构成因素的影响

Table 3	Effects of different tr	reatment combinations	on vield	l and its cor	mponent factors	of Lianmai 8
I able 3	Effects of uniterent ti	i caunciii combinanons	OII VICIO	i anu no coi	mponem raciors	OI LIAIIIIIAI (

行距处理 Line spacing treatment	密度处理 Density treatment	成穂数 Ear number 万/hm²	穗粒数 Grains per ear//个	小穗退化数 Number of spikelet degeneration//个	千粒重 1 000-grain weight//g	实际产量 Actual yield kg/hm²
A ₁₅	B ₂₅	516.0	33.5	2. 1	44. 3	7 548.0
	B_{30}	586. 5	32. 2	2.3	44. 2	8 136.0
	${ m B}_{35}$	637.5	31.8	2.4	44. 5	8 574.0
	B_{40}	684. 0	29.4	2.5	44. 4	8 562.0
Λ_{20}	B_{25}	493.5	33.9	1.8	44. 5	7 482.0
	B_{30}	576.0	31.5	2. 2	44.3	7 839.0
	${\rm B}_{35}$	628. 5	30.8	2.3	44. 6	8 281.5
	B_{40}	660.0	30. 1	2.5	44. 5	8 539.5
125	B_{25}	487.5	33.8	2. 2	44. 7	7 296.0
	B_{30}	570.0	31.4	2.5	44. 5	7 602.0
	${ m B}_{35}$	609.0	30. 1	2.6	44. 5	7 758.0
	B_{40}	645.0	28. 1	2.7	44. 6	7 741.5
130	B_{25}	472.5	31.8	2. 2	44. 8	6 919. 5
	B_{30}	519.0	30.7	2.4	44. 5	7 137.0
	${\rm B}_{35}$	576.0	30.3	2.7	44. 4	7 684. 5
	B_{40}	582. 0	29.9	2.7	44. 3	7 660. 5

表 4 不同行距和密度处理对连麦 8 号产量及其构成因素的主效应
Table 4 Main effects of different line spacing and density on yield and its component factors of Lianmai 8

处理编号 Treatment code	成穂数 Ear number 万/hm²	穗粒数 Grains per ear//个	小穗退化数 Number of spikelet degeneration 个	千粒重 1 000- grain weight//g	实际产量 Actual yield kg/hm²
A ₁₅	606.0	31.7	2. 3	44. 4	8 205.0
\mathbf{A}_{20}	589.5	31.6	2. 2	44. 5	8 035.5
A_{25}	577.5	30.9	2.5	44. 6	7 599.0
A_{30}	537.0	30. 7	2.5	44. 5	7 350.0
B_{25}	492.0	33.3	2. 1	44. 6	7 311.0
B_{30}	562. 5	31.5	2.4	44. 4	7 678.5
B_{35}	613.5	30.8	2.5	44. 5	8 074. 5
\mathbf{B}_{40}	643.5	29. 4	2. 6	44. 5	8 125.5

3 结论

前人研究表明,晚播条件下中高密度处理的小麦籽粒产量高于低密度处理,适当提高晚播小麦的种植密度可以增强群体质量性状,弥补个体生长量较小的不足,有利于晚播小麦获得高产^[6-7]。该试验结果显示,随着播种密度的增加和行距的减小,晚播小麦的实际产量呈逐渐升高的趋势,其中当播种密度为600万/hm²、行距为15 cm或播种密度

525 万/hm²、行距 15 cm 时,实际产量达到最大值,这与前人的研究结果表现相似^[6,8],与徐启来等^[9-10] 对其他品种的研究结果也一致。总的来说,淮北地区晚播稻茬麦要想获得高产,必须配以较窄行距与较高密度。

参考文献

- [1] 丁位华,冯素伟,姜小苓,等.播期,密度和行距对 BNS 型杂交小麦光合及产量的影响[J].麦类作物学报,2017,37(3);366-375.
- [2] 周娜娜,王飞,徐年龙,等. 密度和行距对宽幅匀播小麦群体质量及产量的影响[J]. 安徽农业科学,2019,47(6):42-44.
- [3] 杨佳凤,丁锦峰,顾后文,等. 密肥组合对稻茬晚播小麦籽粒产量和效益的影响[J]. 麦类作物学报,2013,33(3);503-506.
- [4] 李凤云,孙本普,李秀云.晚播对小麦生长发育的影响及其高产措施[J]. 湖北农业科学,2007,46(1):36-39.
- [5] 海江波,由海霞,张保军.不同播量对面条专用小麦品种小偃 503 生长发育,产量及品质的影响[J].麦类作物学报,2002,22(3):92-94.
- [6] 张金宝,秦霞,孙佩贤,等. 黄淮麦区种植密度对晚播冬小麦花后氮素 代谢和利用率的影响[J]. 西北农林科技大学学报(自然科学版), 2010,38(12);112-116,122.
- [7] 陈根祥,吴建中,朱傅祥,等 晚播小麦生育特点及适宜密度研究[J]. 安徽农学通报,2009,15(2):74-77,85.
- [8] 乔玉强,曹承富,杜世州,等. 氮肥运筹和播种密度对晚播小麦群体总 茎数及产量的影响[J]. 华北农学报,2014,29(2):204-207.
- [9] 徐启来,王静静,杜洪艳,等. 行距和密度对稻茬小麦淮麦 28 群体质量及产量形成的影响[J]. 大麦与谷类科学,2017,34(1):15-18.
- [10] 王静静,杜洪艳,孙善国,等.不同播种时期与密度对晚播稻茬麦淮麦32 群体素质及产量构成的影响[J].大麦与谷类科学,2018,35(5):1-4